Some properties for convex cones are discussed, which are used to obtain an equivalent condition and another important property for nearly cone-subconvexlike set-valued functions. Under the nearly cone-subconvexlikene...Some properties for convex cones are discussed, which are used to obtain an equivalent condition and another important property for nearly cone-subconvexlike set-valued functions. Under the nearly cone-subconvexlikeness, some characterizations of the super efficiency are given in terms of scalarization and Lagrangian multipliers. Related results are generalized.展开更多
In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under ...In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.展开更多
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the...In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature.展开更多
This paper focuses on the vector traffic network equilibrium problem with demands uncertainty and capacity constraints of arcs, in which, the demands are not exactly known and assumed as a discrete set that contains f...This paper focuses on the vector traffic network equilibrium problem with demands uncertainty and capacity constraints of arcs, in which, the demands are not exactly known and assumed as a discrete set that contains finite scenarios. For different scenario, the demand may be changed, which seems much more reasonable in practical programming. By using the linear scalarization method,we introduce several definitions of parametric equilibrium flows and reveal their mutual relations. Meanwhile, the relationships between the scalar variational inequality as well as the(weak) vector equilibrium flows are explored, meanwhile, some necessary and sufficient conditions that ensure the(weak) vector equilibrium flows are also considered. Additionally, by means of nonlinear scalarization functionals, two kinds of equilibrium principles are derived. All of the derived conclusions contain the demands uncertainty and capacity constraints of arcs, thus the results proposed in this paper improved some existing works. Finally, some numerical examples are employed to show the merits of the improved conclusions.展开更多
This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions ar...This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions are investigated.Some topological properties and existence theorems of these solutions are given.It is shown that for set-valued optimization problems with upper(outer)cone-semicontinuous objective values or closed objective maps the approximate weak minimal and strictly approximate lower weak minimal solution sets are closed.By using the polar cone and two scalarization processes,some necessary and sufficient optimality conditions in the sense of vector and set criteria are provided.展开更多
We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of...We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of the original problem. This equivalence holds globally and enables one to use global optimization algorithms (for example, classical genetic algorithms with “roulette wheel” selection) to produce multiple solutions of the multiobjective problem. In this article we prove the mentioned equivalence and show that, if the ordering cone is polyhedral and the function being optimized is piecewise differentiable, then computing the values of a scalarization function reduces to solving a quadratic programming problem. We also present some preliminary numerical results pertaining to this new method.展开更多
This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation met...This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation method that leads to finding the optimal solution to the problem. Our analysis aims to find a suitable technique to generate Lagrangian multipliers, and later these multipliers are used in the relaxation method to solve Multiobjective optimization problems. We propose a search-based technique to generate Lagrange multipliers. In our paper, we choose a suitable and well-known scalarization method that transforms the original multiobjective into a scalar objective optimization problem. Later, we solve this scalar objective problem using Lagrangian relaxation techniques. We use Brute force techniques to sort optimum solutions. Finally, we analyze the results, and efficient methods are recommended.展开更多
In this paper, we obtain the Painleve-Kuratowski Convergence of the efficient solution sets, the weak efficient solution sets and various proper efficient solution sets for the perturbed generalized system with a sequ...In this paper, we obtain the Painleve-Kuratowski Convergence of the efficient solution sets, the weak efficient solution sets and various proper efficient solution sets for the perturbed generalized system with a sequence of mappings converging in a real locally convex Hausdorff topological vector spaces.展开更多
In this paper, we give a characterization of super efficiency, and obtain a scalarization result for super efficiency in locally convex locally bounded topological vector spaces. The proof given here is substantially ...In this paper, we give a characterization of super efficiency, and obtain a scalarization result for super efficiency in locally convex locally bounded topological vector spaces. The proof given here is substantially different from that given by Borwein and Zhuang.展开更多
Under the assumption that the ordering cone has a nonempty interior and is separable (or the feasible set has a nonempty interior and is separable), we give scalarization theorems on Benson proper effciency. Applyin...Under the assumption that the ordering cone has a nonempty interior and is separable (or the feasible set has a nonempty interior and is separable), we give scalarization theorems on Benson proper effciency. Applying the results to vector optimization problems with nearly cone-subconvexlike set-valued maps, we obtain scalarization theorems and Lagrange multiplier theorems for Benson proper effcient solutions.展开更多
In this paper, some theoretical notions of well-posedness and of well-posedness in the generalized sense for scalar optimization problems are presented and some important results are analysed. Similar notions of well-...In this paper, some theoretical notions of well-posedness and of well-posedness in the generalized sense for scalar optimization problems are presented and some important results are analysed. Similar notions of well-posedness, respectively for a vector optimization problem and for a variational inequality of differential type, are discussed subsequently and, among the various vector well-posedness notions known in the literature, the attention is focused on the concept of pointwise well-posedness. Moreover, after a review of well-posedness properties, the study is further extended to a scalarizing procedure that preserves well-posedness of the notions listed, namely to a result, obtained with a special scalarizing function, which links the notion of pontwise well-posedness to the well-posedness of a suitable scalar variational inequality of differential type.展开更多
文摘Some properties for convex cones are discussed, which are used to obtain an equivalent condition and another important property for nearly cone-subconvexlike set-valued functions. Under the nearly cone-subconvexlikeness, some characterizations of the super efficiency are given in terms of scalarization and Lagrangian multipliers. Related results are generalized.
基金Foundation item: Supported by the Natural Science Foundation of China(10871216) Supported by the Natural Science Foundation Project of CQ CSTC(2008BB0346, 2007BB0441) Supported by the Excellent Young Teachers Program of Chongqing Jiaotong University(EYT08-016) Acknowledgement The author would like to thank the anonymous referee for the valuable remarks that helped considerably to correct and to improve the presentation.
文摘In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
基金Supported by the National Natural Science Foundation of China(No.11301571.11271389.11271391)the Natural Science Foundation Project of ChongQing(No.CSTC,2012jjA00016.2011BA0030)the Education Committee Research Foundation of ChongQing(KJ130428)
文摘In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature.
基金supported by the National Natural Science Foundation of China(Grant Nos.61573096,61272530 and 61573106)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012741)the “333 Engineering” Foundation of Jiangsu Province of China(Grant No.BRA2015286)
文摘This paper focuses on the vector traffic network equilibrium problem with demands uncertainty and capacity constraints of arcs, in which, the demands are not exactly known and assumed as a discrete set that contains finite scenarios. For different scenario, the demand may be changed, which seems much more reasonable in practical programming. By using the linear scalarization method,we introduce several definitions of parametric equilibrium flows and reveal their mutual relations. Meanwhile, the relationships between the scalar variational inequality as well as the(weak) vector equilibrium flows are explored, meanwhile, some necessary and sufficient conditions that ensure the(weak) vector equilibrium flows are also considered. Additionally, by means of nonlinear scalarization functionals, two kinds of equilibrium principles are derived. All of the derived conclusions contain the demands uncertainty and capacity constraints of arcs, thus the results proposed in this paper improved some existing works. Finally, some numerical examples are employed to show the merits of the improved conclusions.
基金Institute for Research in Fundamental Sciences(No.96580048).
文摘This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions are investigated.Some topological properties and existence theorems of these solutions are given.It is shown that for set-valued optimization problems with upper(outer)cone-semicontinuous objective values or closed objective maps the approximate weak minimal and strictly approximate lower weak minimal solution sets are closed.By using the polar cone and two scalarization processes,some necessary and sufficient optimality conditions in the sense of vector and set criteria are provided.
文摘We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of the original problem. This equivalence holds globally and enables one to use global optimization algorithms (for example, classical genetic algorithms with “roulette wheel” selection) to produce multiple solutions of the multiobjective problem. In this article we prove the mentioned equivalence and show that, if the ordering cone is polyhedral and the function being optimized is piecewise differentiable, then computing the values of a scalarization function reduces to solving a quadratic programming problem. We also present some preliminary numerical results pertaining to this new method.
文摘This paper introduces the Lagrangian relaxation method to solve multiobjective optimization problems. It is often required to use the appropriate technique to determine the Lagrangian multipliers in the relaxation method that leads to finding the optimal solution to the problem. Our analysis aims to find a suitable technique to generate Lagrangian multipliers, and later these multipliers are used in the relaxation method to solve Multiobjective optimization problems. We propose a search-based technique to generate Lagrange multipliers. In our paper, we choose a suitable and well-known scalarization method that transforms the original multiobjective into a scalar objective optimization problem. Later, we solve this scalar objective problem using Lagrangian relaxation techniques. We use Brute force techniques to sort optimum solutions. Finally, we analyze the results, and efficient methods are recommended.
基金Supported by the National Natural Science Foundation of China (No. 10871216 and 11171362)
文摘In this paper, we obtain the Painleve-Kuratowski Convergence of the efficient solution sets, the weak efficient solution sets and various proper efficient solution sets for the perturbed generalized system with a sequence of mappings converging in a real locally convex Hausdorff topological vector spaces.
基金supported by the National Natural Science FOundation of China and the Natural ScienceFoundation of Jiangxi Province.
文摘In this paper, we give a characterization of super efficiency, and obtain a scalarization result for super efficiency in locally convex locally bounded topological vector spaces. The proof given here is substantially different from that given by Borwein and Zhuang.
基金Supported by the National Natural Science Foundation of China (10571035,10871141)
文摘Under the assumption that the ordering cone has a nonempty interior and is separable (or the feasible set has a nonempty interior and is separable), we give scalarization theorems on Benson proper effciency. Applying the results to vector optimization problems with nearly cone-subconvexlike set-valued maps, we obtain scalarization theorems and Lagrange multiplier theorems for Benson proper effcient solutions.
文摘In this paper, some theoretical notions of well-posedness and of well-posedness in the generalized sense for scalar optimization problems are presented and some important results are analysed. Similar notions of well-posedness, respectively for a vector optimization problem and for a variational inequality of differential type, are discussed subsequently and, among the various vector well-posedness notions known in the literature, the attention is focused on the concept of pointwise well-posedness. Moreover, after a review of well-posedness properties, the study is further extended to a scalarizing procedure that preserves well-posedness of the notions listed, namely to a result, obtained with a special scalarizing function, which links the notion of pontwise well-posedness to the well-posedness of a suitable scalar variational inequality of differential type.