期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deep learning enhanced lithium-ion battery nonlinear fading prognosis
1
作者 Shanling Ji Jianxiong Zhu +7 位作者 Zhiyang Lyu Heze You Yifan Zhou Liudong Gu Jinqing Qu Zhijie Xia Zhisheng Zhang Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期565-573,I0015,共10页
With the assistance of artificial intelligence,advanced health prognosis technique plays a critical role in the lithium-ion(Li-ion) batteries management system.However,conventional data-driven early aging prediction e... With the assistance of artificial intelligence,advanced health prognosis technique plays a critical role in the lithium-ion(Li-ion) batteries management system.However,conventional data-driven early aging prediction exhibited dramatic drawbacks,i.e.,volatile capacity nonlinear fading trajectories create obstacles to the accurate multistep ahead prediction due to the complex working conditions of batteries.Herein,a novel deep learning model is proposed to achieve a universal and accurate Li-ion battery aging prognosis.Two battery datasets with various electrode types and cycling conditions are developed to validate the proposed approaches.Knee-point probability(KPP),extracted from the capacity loss curve,is first proposed to detect knee points and improve state-of-health(SOH) predictive accuracy,especially during periods of rapid capacity decline.Using one-cycle data of partial raw voltage as the model input,the SOH and KPP can be simultaneously predicted at multistep ahead,whereas the conventional method showed worse accuracy.Furthermore,to explore the underlying characteristics among various degradation tendencies,an online model update strategy is developed by leveraging the adversarial adaptationinduced transfer learning technique.This work gains new sights into the comprehensive Li-ion battery management and prognosis framework through decomposing capacity degradation trajectories and adversarial learning on the unlabeled samples. 展开更多
关键词 Battery aging prognosis Deep learning Knee-point probability sate-of-health
下载PDF
基于充电电压片段和融合方法的锂离子电池SOC-SOH-RUL联合估计 被引量:7
2
作者 张吉昂 王萍 程泽 《电网技术》 EI CSCD 北大核心 2022年第3期1063-1072,共10页
对锂离子电池的荷电状态(state of charge,SOC),健康状态(state of health,SOH)和剩余使用寿命(remaining useful life,RUL)进行准确估计是锂离子电池安全稳定运行的重要保障,该文提出一种结合充电电压片段和等效电路模型(equivalent ci... 对锂离子电池的荷电状态(state of charge,SOC),健康状态(state of health,SOH)和剩余使用寿命(remaining useful life,RUL)进行准确估计是锂离子电池安全稳定运行的重要保障,该文提出一种结合充电电压片段和等效电路模型(equivalent circuit model,ECM)-数据驱动(data driven method,DDM)融合方法的锂离子电池SOC-SOH-RUL联合估计框架,实现对电池全生命周期的SOC、SOH和RUL的联合估计。首先提取与电池当前容量关联度最高的恒流充电电压曲线片段的上升时间作为健康特征(health factor,HF),利用外部训练集电池的老化数据,离线建立电池老化的最小二乘支持向量机(least squares support vector machine,LSSVM)模型。应用阶段,通过采集待测电池充电电压片段提取HF并代入老化模型进行SOH估计;对该电压区段进行ECM拟合,用阻容参数辨识值和容量估计值建立状态方程和观测方程,结合无迹卡尔曼滤波算法(unscented Kalman filter,UKF)进行SOC估计;用高斯过程回归(Gaussian process regression,GPR)对当前循环次数以前的DV随循环次数的变化进行映射,并借助老化模型预测容量的退化轨迹,实现RUL估计。实验结果表明,所提方法能够联合实现SOC、SOH和RUL的长期稳定估计。 展开更多
关键词 荷电状态 健康状态 剩余使用寿命 等效电路模型 数据驱动方法
下载PDF
基于充电电压片段的锂离子电池状态联合估计方法 被引量:3
3
作者 王萍 张吉昂 +1 位作者 程泽 于耀先 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第10期187-200,共14页
锂离子电池的荷电状态(SOC)、健康状态(SOH)和剩余使用使命(RUL)是锂离子电池安全稳定运行的重要状态参数,本文提出一种基于充电电压上升片段的锂离子电池状态联合估计方法,实现对电池预测起点(SP)到寿命终点(EOL)的较长运行周期内SOC、... 锂离子电池的荷电状态(SOC)、健康状态(SOH)和剩余使用使命(RUL)是锂离子电池安全稳定运行的重要状态参数,本文提出一种基于充电电压上升片段的锂离子电池状态联合估计方法,实现对电池预测起点(SP)到寿命终点(EOL)的较长运行周期内SOC、SOH和RUL的联合估计.该框架在充电阶段进行SOH和RUL估计,在放电阶段进行SOC估计.首先提取电池恒流充电电压曲线片段的上升时间作为健康特征(HF),以HF作为输入,循环容量作为输出,建立最小二乘支持向量机(LSSVM)电池老化模型,对当前健康状态进行估计;采用等效电路模型对该电压区段进行非线性拟合,用拟合参数建立状态空间模型,结合无迹卡尔曼滤波算法进行SOC估计;用高斯过程回归时间序列模型对电池的健康特征序列进行建模,通过循环次数外推预测健康特征的变化趋势,并结合LSSVM老化模型,对RUL进行预测并给出置信区间.实验结果表明,所提方法具有较高的估计精度和较好的稳定性. 展开更多
关键词 荷电状态 健康状态 剩余使用寿命 等效电路模型 数据驱动方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部