Same-beam VLBI means that two spacecrafts with small separation angles that transmit multi-frequency signals specially designed are observed simultaneously through the main beam of receiving antennas. In same-beam VLB...Same-beam VLBI means that two spacecrafts with small separation angles that transmit multi-frequency signals specially designed are observed simultaneously through the main beam of receiving antennas. In same-beam VLBI,the differential phase delay between the two spacecrafts and the two receiving antennas can be obtained within a small error of several picoseconds. As a successful application,the short-arc orbit determination of several hours for Rstar and Vstar,which are two small sub-spacecrafts of SELENE,has been much improved by using the same-beam VLBI data together with the Doppler and range data. The long-arc orbit determination of several days has also been accomplished within an error of about 10 m with the same-beam VLBI data incorporated. These results show the value of the same-beam VLBI for the orbit determination of multi-spacecrafts. This paper introduces the same-beam VLBI and Doppler observations of SELENE and the orbit determination results. In addition,this paper introduces how to use the same-beam VLBI for a lunar sample-return mission,which usually consists of an orbiter,a lander and a return unit. The paper also offers the design for the onboard radio sources in the lunar sample-return mission,and introduces applications of S-band multi-frequency same-beam VLBI in lunar gravity exploration and applications during all stages in the position/orbit determinations such as orbiting,landing,sampling,ascending,and docking.展开更多
In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi...In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-kin-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.展开更多
The out-of-sample R^(2) is designed to measure forecasting performance without look-ahead bias.However,researchers can hack this performance metric even without multiple tests by constructing a prediction model using ...The out-of-sample R^(2) is designed to measure forecasting performance without look-ahead bias.However,researchers can hack this performance metric even without multiple tests by constructing a prediction model using the intuition derived from empirical properties that appear only in the test sample.Using ensemble machine learning techniques,we create a virtual environment that prevents researchers from peeking into the intuition in advance when performing out-of-sample prediction simulations.We apply this approach to robust monitoring,exploiting a dynamic shrink-age effect by switching between a proposed forecast and a benchmark.Considering stock return forecasting as an example,we show that the resulting robust monitoring forecast improves the average performance of the proposed forecast by 15%(in terms of mean-squared-error)and reduces the variance of its relative performance by 46%while avoiding the out-of-sample R^(2)-hacking problem.Our approach,as a final touch,can further enhance the performance and stability of forecasts from any models and methods.展开更多
This paper describes the guidance and navigation technique used by Hayabusa2 for the asteroid rendezvous operation to reach Ryugu.The operation results,including the achieved guidance and navigation performance,are al...This paper describes the guidance and navigation technique used by Hayabusa2 for the asteroid rendezvous operation to reach Ryugu.The operation results,including the achieved guidance and navigation performance,are also summarized.Multiple assessment and navigation teams worked closely to provide reliable navigation solutions with a short solution delivery cycle.Although the uncertainty of the Ryugu’s ephemeris was considerable before Hayabusa2’s arrival,a combination of radiometric-optical hybrid navigation and a stochastic-constrained optimum guidance method was able to achieve an accuracy of less than 100 m and 1 cm/s,and the arrival was precisely timed.展开更多
1 Overview of Chang'e-5 project As the final step of the"three-step''development strategy(i.e.,orbiting,landing and sample returning)of the Chinese Lunar Exploration Program,the Chang,e-5 project aims...1 Overview of Chang'e-5 project As the final step of the"three-step''development strategy(i.e.,orbiting,landing and sample returning)of the Chinese Lunar Exploration Program,the Chang,e-5 project aims to achieve moon surface sampling and retrieving for the first time in China.It was initiated with the approval of the State Council in January 2011.展开更多
Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electr...Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.展开更多
针对采样返回任务中多探测器精密短弧定轨问题,研究了甚长基线干涉测量(Very Long Baseline Interferometry,VLBI)技术在两探测器间的交替观测模式、2π模糊度解算方法和数据差分处理方法,给出了星载信标的设计原则和方案。利用日本SEL...针对采样返回任务中多探测器精密短弧定轨问题,研究了甚长基线干涉测量(Very Long Baseline Interferometry,VLBI)技术在两探测器间的交替观测模式、2π模糊度解算方法和数据差分处理方法,给出了星载信标的设计原则和方案。利用日本SELENE探月卫星的两个小卫星R-star和V-star的同波束VLBI相关相位生成了交替VLBI相位观测量,对其进行了差分处理求解差分时延,然后利用差分时延和测速测距数据进行定轨计算。对差分时延的分析表明,交替VLBI差分群时延RMS值为46 mm,测量精度与同波束VLBI差分群时延相当;交替VLBI差分相时延RMS值为1.6 mm,测量精度与同波束VLBI差分相时延相当。定轨结果表明,交替VLBI在进行多探测器的短弧定轨时能达到同波束VLBI相当的精度。展开更多
文摘Same-beam VLBI means that two spacecrafts with small separation angles that transmit multi-frequency signals specially designed are observed simultaneously through the main beam of receiving antennas. In same-beam VLBI,the differential phase delay between the two spacecrafts and the two receiving antennas can be obtained within a small error of several picoseconds. As a successful application,the short-arc orbit determination of several hours for Rstar and Vstar,which are two small sub-spacecrafts of SELENE,has been much improved by using the same-beam VLBI data together with the Doppler and range data. The long-arc orbit determination of several days has also been accomplished within an error of about 10 m with the same-beam VLBI data incorporated. These results show the value of the same-beam VLBI for the orbit determination of multi-spacecrafts. This paper introduces the same-beam VLBI and Doppler observations of SELENE and the orbit determination results. In addition,this paper introduces how to use the same-beam VLBI for a lunar sample-return mission,which usually consists of an orbiter,a lander and a return unit. The paper also offers the design for the onboard radio sources in the lunar sample-return mission,and introduces applications of S-band multi-frequency same-beam VLBI in lunar gravity exploration and applications during all stages in the position/orbit determinations such as orbiting,landing,sampling,ascending,and docking.
基金supported by the National Natural Science Foundation of China(Grant11372311)the grant from the State key Laboratory of Astronautic Dynamics(2014-ADL-DW0201)
文摘In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-kin-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.
文摘The out-of-sample R^(2) is designed to measure forecasting performance without look-ahead bias.However,researchers can hack this performance metric even without multiple tests by constructing a prediction model using the intuition derived from empirical properties that appear only in the test sample.Using ensemble machine learning techniques,we create a virtual environment that prevents researchers from peeking into the intuition in advance when performing out-of-sample prediction simulations.We apply this approach to robust monitoring,exploiting a dynamic shrink-age effect by switching between a proposed forecast and a benchmark.Considering stock return forecasting as an example,we show that the resulting robust monitoring forecast improves the average performance of the proposed forecast by 15%(in terms of mean-squared-error)and reduces the variance of its relative performance by 46%while avoiding the out-of-sample R^(2)-hacking problem.Our approach,as a final touch,can further enhance the performance and stability of forecasts from any models and methods.
基金JSPS KAKENHI Grant No.18H01628 also supported this work.
文摘This paper describes the guidance and navigation technique used by Hayabusa2 for the asteroid rendezvous operation to reach Ryugu.The operation results,including the achieved guidance and navigation performance,are also summarized.Multiple assessment and navigation teams worked closely to provide reliable navigation solutions with a short solution delivery cycle.Although the uncertainty of the Ryugu’s ephemeris was considerable before Hayabusa2’s arrival,a combination of radiometric-optical hybrid navigation and a stochastic-constrained optimum guidance method was able to achieve an accuracy of less than 100 m and 1 cm/s,and the arrival was precisely timed.
文摘1 Overview of Chang'e-5 project As the final step of the"three-step''development strategy(i.e.,orbiting,landing and sample returning)of the Chinese Lunar Exploration Program,the Chang,e-5 project aims to achieve moon surface sampling and retrieving for the first time in China.It was initiated with the approval of the State Council in January 2011.
基金supported by the National Natural Science Foundation of China(Grant No.11432001)the Tsinghua University Initiative Scientific Research Program(Grant No.20131089268)
文摘Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.