基于隐患排查信息的知识挖掘对于工程安全管理具有重要的支持作用。自然语言处理(natural language processing,NLP)技术是目前实现文本知识挖掘的重要方法,知识挖掘的深度和精度是该类方法的重要衡量指标。为了提升水电工程安全隐患文...基于隐患排查信息的知识挖掘对于工程安全管理具有重要的支持作用。自然语言处理(natural language processing,NLP)技术是目前实现文本知识挖掘的重要方法,知识挖掘的深度和精度是该类方法的重要衡量指标。为了提升水电工程安全隐患文本知识挖掘效率,本文提出了一种结合文本分类与文本挖掘技术的隐患文本知识挖掘方法。该方法利用RoBERTa-wwm-CNN混合深度学习模型进行隐患文本快速智能分类,在此基础上,通过绘制隐患词云图实现不同种类隐患管理要点的可视化分析,以词共现网络构建为基础,分析隐患数据间的内在联系。将该方法应用于白鹤滩水电站安全隐患文本挖掘分析,与现有较先进的文本分类模型相比,本文所提模型精度有所提升,验证了所提模型的优越性。展开更多
文摘基于隐患排查信息的知识挖掘对于工程安全管理具有重要的支持作用。自然语言处理(natural language processing,NLP)技术是目前实现文本知识挖掘的重要方法,知识挖掘的深度和精度是该类方法的重要衡量指标。为了提升水电工程安全隐患文本知识挖掘效率,本文提出了一种结合文本分类与文本挖掘技术的隐患文本知识挖掘方法。该方法利用RoBERTa-wwm-CNN混合深度学习模型进行隐患文本快速智能分类,在此基础上,通过绘制隐患词云图实现不同种类隐患管理要点的可视化分析,以词共现网络构建为基础,分析隐患数据间的内在联系。将该方法应用于白鹤滩水电站安全隐患文本挖掘分析,与现有较先进的文本分类模型相比,本文所提模型精度有所提升,验证了所提模型的优越性。