Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The non...Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass,a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra,and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed.The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity.展开更多
In this paper, a new fixed point theorem is established in noncompact hyperconvex metric spaces. As applications, a continuous selection and its fixed point theorem, an existence theorem for maximal elements, a Ky Fan...In this paper, a new fixed point theorem is established in noncompact hyperconvex metric spaces. As applications, a continuous selection and its fixed point theorem, an existence theorem for maximal elements, a Ky Fan minimax inequality and an existence theorem for saddle points are obtained.展开更多
A modified mixed/hybrid finite element method, which is no longer required to satisfy the Babuska-Brezzi condition, is referred to as a stabilized method Based on the duality of vanational principles in solid mechanic...A modified mixed/hybrid finite element method, which is no longer required to satisfy the Babuska-Brezzi condition, is referred to as a stabilized method Based on the duality of vanational principles in solid mechanics, a new type of stabilized method, called the combinatorially stabilized mixed/hybrid finite element method, is presented by weight-averaging both the primal and the dual "saddle-point" schemes. Through a general analysis of stability and convergence under an abstract framework, it is shown that for the methods only an inf-sup inequality much weaker than Babuska-Brezzi condition needs to be satisfied. As a concrete application, it is concluded that the combinatorially stabilized Raviart and Thomas mixed methods permit the C -elements to replace the H(div; Ω)-elements.展开更多
By using the critical point theory, some sufficient conditions for the existence of the solutions to the boundary value problems of a discrete generalized Emden-Fowler equation are obtained. In a special case, a sharp...By using the critical point theory, some sufficient conditions for the existence of the solutions to the boundary value problems of a discrete generalized Emden-Fowler equation are obtained. In a special case, a sharp condition is obtained for the existence of the boundary value problems of the above equation. For a linear case, by the discrete variational theory, a necessary and sufficient condition for the existence, uniqueness and multiplicity of the solutions is also established.展开更多
In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the ...In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre- conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi- tioned matrix are real and located in a positive interval. Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are obtained. A practical parameter is suggested in implementing the RHSS preconditioner. Finally, some numerical experiments are illustrated to show the effectiveness of the new preconditioner.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11402151 and 11572182)
文摘Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass,a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra,and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed.The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity.
基金the Science Research Foundation of Bijie University(No.20062002)
文摘In this paper, a new fixed point theorem is established in noncompact hyperconvex metric spaces. As applications, a continuous selection and its fixed point theorem, an existence theorem for maximal elements, a Ky Fan minimax inequality and an existence theorem for saddle points are obtained.
文摘A modified mixed/hybrid finite element method, which is no longer required to satisfy the Babuska-Brezzi condition, is referred to as a stabilized method Based on the duality of vanational principles in solid mechanics, a new type of stabilized method, called the combinatorially stabilized mixed/hybrid finite element method, is presented by weight-averaging both the primal and the dual "saddle-point" schemes. Through a general analysis of stability and convergence under an abstract framework, it is shown that for the methods only an inf-sup inequality much weaker than Babuska-Brezzi condition needs to be satisfied. As a concrete application, it is concluded that the combinatorially stabilized Raviart and Thomas mixed methods permit the C -elements to replace the H(div; Ω)-elements.
基金This work was supported by the Foundation of First Period of Key Basic Research sponsored by the Department of Science and Technology of China(Grant No.2003CCA02400)National Natural Science Foundation of China(Grant No.10471029)by Natural Science Foundation of Guangdong Province(Grant No.04300034).
文摘By using the critical point theory, some sufficient conditions for the existence of the solutions to the boundary value problems of a discrete generalized Emden-Fowler equation are obtained. In a special case, a sharp condition is obtained for the existence of the boundary value problems of the above equation. For a linear case, by the discrete variational theory, a necessary and sufficient condition for the existence, uniqueness and multiplicity of the solutions is also established.
基金Acknowledgments. The authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript. This work is supported by the National Natural Science Foundation of China(11172192) and the National Natural Science Pre-Research Foundation of Soochow University (SDY2011B01).
文摘In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre- conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi- tioned matrix are real and located in a positive interval. Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are obtained. A practical parameter is suggested in implementing the RHSS preconditioner. Finally, some numerical experiments are illustrated to show the effectiveness of the new preconditioner.