The Xingnao Jieyu capsule has been shown to effectively relieve neurologic impairments and les- sen depression. It remains poorly understood whether this capsule can be used to treat post-stroke depression. Thus, in t...The Xingnao Jieyu capsule has been shown to effectively relieve neurologic impairments and les- sen depression. It remains poorly understood whether this capsule can be used to treat post-stroke depression. Thus, in the present study, we established a rat model of post-stroke depression using left middle cerebral artery occlusions in combination of chronic unpredictable stress and solitary housing during development. Experimental rats received intragastric perfusion with 0.82, 0.41, and 0.20 g/kg Xingnao Jieyu capsules separately dissolved in 2 mL distilled water. Fluoxetine served as a positive control. The treatment was conducted over 28 days. Sugar water consumption test, open-field test, real-time fluorescent quantitative PCR and immunohistochemical staining results demonstrated that intragastric perfusion with various doses of Xingnao Jieyu capsules increased sugar water consumption, voluntary behaviors and synaptotagmin mRNA and protein expression in rats with post-stroke depression. These therapeutic effects were similar to those of fluoxetine. These results indicate that Xingnao Jieyu capsules upregulate synaptotagmin expression in hip pocampi of rats with post-stroke depression, and exert antidepressant effects.展开更多
Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic...Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic brain injury by controlled cortical impact. Rat models were intragastrically administered 9 and 18 g/kg Xuefu Zhuyu decoction once a day for 14 or 21 days. Changes in neurological function were assessed by modified neurological severity scores and the Morris water maze. Immunohistochemistry, western blot assay, and re- verse-transcription polymerase chain reaction were used to analyze synapsin protein and mRNA expression at the injury site of rats. Our results showed that Xuefu Zhuyu decoction visibly improved neurological function of rats with traumatic brain injury. These changes were accompanied by increased expression of synaptophysin, synapsin I, and postsynaptic density protein-95 protein and mRNA in a dose-de- pendent manner. These findings indicate that Xuefu Zhuyu decoction increases synapsin expression and improves neurological deficits alder traumatic brain injury.展开更多
Synapsins serve as flagships among the presynaptic proteins due to their abundance on synaptic vesicles and contribution to synaptic communication. Several studies have emphasized the importance of this multi-gene fam...Synapsins serve as flagships among the presynaptic proteins due to their abundance on synaptic vesicles and contribution to synaptic communication. Several studies have emphasized the importance of this multi-gene family of neuron-specific phosphoproteins in maintaining brain physiology. In the recent times, increasing evidence has established the relevance of alterations in synapsins as a major determinant in many neurological disorders. Here,we give a comprehensive description of the diverse roles of the synapsin family and the underlying molecular mechanisms that contribute to several neurological disorders.These physiologically important roles of synapsins associated with neurological disorders are just beginning to be understood. A detailed understanding of the diversified expression of synapsins may serve to strategize novel therapeutic approaches for these debilitating neurological disorders.展开更多
Paired associative stimulation has been used in stroke patients as an innovative recovery treatment.However,the mechanisms underlying the therapeutic effectiveness of paired associative stimulation on neurological fun...Paired associative stimulation has been used in stroke patients as an innovative recovery treatment.However,the mechanisms underlying the therapeutic effectiveness of paired associative stimulation on neurological function remain unclear.In this study,rats were randomly divided into middle cerebral occlusion model(MCAO)and paired associated magnetic stimulation(PAMS)groups.The MCAO rat model was produced by middle cerebral artery embolization.The PAMS group received PAMS on days 3 to 20 post MCAO.The MCAO group received sham stimulation,three times every week.Within 18 days after ischemia,rats were subjected to behavioral experiments—the foot-fault test,the balance beam walking test,and the ladder walking test.Balance ability was improved on days 15 and 17,and the footfault rate was less in their affected limb on day 15 in the PAMS group compared with the MCAO group.Western blot assay showed that the expression levels of brain derived neurotrophic factor,glutamate receptor 2/3,postsynaptic density protein 95 and synapsin-1 were significantly increased in the PAMS group compared with the MCAO group in the ipsilateral sensorimotor cortex on day 21.Resting-state functional magnetic resonance imaging revealed that regional brain activities in the sensorimotor cortex were increased in the ipsilateral hemisphere,but decreased in the contralateral hemisphere on day 20.By finite element simulation,the electric field distribution showed a higher intensity,of approximately 0.4 A/m^2,in the ischemic cortex compared with the contralateral cortex in the template.Together,our findings show that PAMS upregulates neuroplasticity-related proteins,increases regional brain activity,and promotes functional recovery in the affected sensorimotor cortex in the rat MCAO model.The experiments were approved by the Institutional Animal Care and Use Committee of Fudan University,China(approval No.201802173 S)on March 3,2018.展开更多
目的:观察丹参注射液对急性脊髓损伤(S C I)大鼠的脊髓灰质突触相关蛋白突触体素(synaptophysin)、突触素(synapsin)的作用,并探讨其机制。方法:将144只SD雄性大鼠制作成SCI模型,随机分为观察组、对照组及SCI组,其中观察组给予丹参注射...目的:观察丹参注射液对急性脊髓损伤(S C I)大鼠的脊髓灰质突触相关蛋白突触体素(synaptophysin)、突触素(synapsin)的作用,并探讨其机制。方法:将144只SD雄性大鼠制作成SCI模型,随机分为观察组、对照组及SCI组,其中观察组给予丹参注射液,对照组给予甲基强的松龙,SCI组不予干预,运用原位杂交技术,观察伤后1d、3d、7d和14d脊髓灰质synaptophysin和synapsin变化。结果:观察组在伤后1d、3d,脊髓灰质synaptophysin和synapsin吸光度值与对照组和SCI组比较无显著性差异,在伤后7d、14d高于SCI组(P<0.01),与对照组比较无显著性差异。结论:丹参可以减轻SCI继发性损伤,是SCI早期理想的治疗药物。展开更多
Synapsins are a family of phosphoproteins specifically associated with the cytoplasmic surface of the synaptic vesicle membrane, appearing to regulate neurotransmitter release, the formation and maintenance of synapti...Synapsins are a family of phosphoproteins specifically associated with the cytoplasmic surface of the synaptic vesicle membrane, appearing to regulate neurotransmitter release, the formation and maintenance of synaptic contacts. They could induce the change of the synaptic plasticity to regulate various adaptation reactions, and change the cognitive behaviors. So we presume that if some cognitive behavior are damaged, synapsins would be changed as well. This gives us a new recognition of better diagnosis and therapy of cognitive disorder desease.展开更多
Dendrite ramification affects synaptic strength and plays a crucial role in memory. Previous studies revealed a correlation between beta 2-adrenergic receptor dysfunction and Alzheimer's disease (AD), although the ...Dendrite ramification affects synaptic strength and plays a crucial role in memory. Previous studies revealed a correlation between beta 2-adrenergic receptor dysfunction and Alzheimer's disease (AD), although the mechanism involved is still poorly understood. The current study investigated the potential effect of the selective β2-adrenergic receptor antagonist, ICI 118551 (ICI), on Aβ deposits and AD-related cognitive impairment. Morris water maze test results demonstrated that the performance of AD-transgenic (TG) mice treated with ICI (AD-TG/ICI) was significantly poorer compared with NaCl-treated AD-TG mice (AD-TG/NaCl), suggesting that β2-adrenergic receptor blockage by ICI might reduce the learning and memory abilities of mice. Golgi staining and immunohistochemical staining revealed that blockage of the β2-adrenergic receptor by ICI treatment decreased the number of dendritic branches, and ICI treatment in AD-TG mice decreased the expression of hippocampal synaptophysin and synapsin 1. Western blot assay results showed that the blockage of β2-adrener- gic receptor increased amyloid-β accumulation by downregulating hippocampal a-secretase activity and increasing the phosphorylation of amyloid precursor protein. These findings suggest that blocking the β2-adrenergic receptor inhibits dendrite ramification of hippocampal neurons in a mouse model of AD.展开更多
基金funded by the Key Science and Technology Project of Shaanxi Provincial "13115"Technology Innovation Engineering,No.2010ZDKG-65
文摘The Xingnao Jieyu capsule has been shown to effectively relieve neurologic impairments and les- sen depression. It remains poorly understood whether this capsule can be used to treat post-stroke depression. Thus, in the present study, we established a rat model of post-stroke depression using left middle cerebral artery occlusions in combination of chronic unpredictable stress and solitary housing during development. Experimental rats received intragastric perfusion with 0.82, 0.41, and 0.20 g/kg Xingnao Jieyu capsules separately dissolved in 2 mL distilled water. Fluoxetine served as a positive control. The treatment was conducted over 28 days. Sugar water consumption test, open-field test, real-time fluorescent quantitative PCR and immunohistochemical staining results demonstrated that intragastric perfusion with various doses of Xingnao Jieyu capsules increased sugar water consumption, voluntary behaviors and synaptotagmin mRNA and protein expression in rats with post-stroke depression. These therapeutic effects were similar to those of fluoxetine. These results indicate that Xingnao Jieyu capsules upregulate synaptotagmin expression in hip pocampi of rats with post-stroke depression, and exert antidepressant effects.
基金supported by the National Natural Science Foundation of China,No.81673719,81173175 and 81303074a grant from China Postdoctoral Science Foundation,No.2016M600639 and 2017T100614
文摘Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic brain injury by controlled cortical impact. Rat models were intragastrically administered 9 and 18 g/kg Xuefu Zhuyu decoction once a day for 14 or 21 days. Changes in neurological function were assessed by modified neurological severity scores and the Morris water maze. Immunohistochemistry, western blot assay, and re- verse-transcription polymerase chain reaction were used to analyze synapsin protein and mRNA expression at the injury site of rats. Our results showed that Xuefu Zhuyu decoction visibly improved neurological function of rats with traumatic brain injury. These changes were accompanied by increased expression of synaptophysin, synapsin I, and postsynaptic density protein-95 protein and mRNA in a dose-de- pendent manner. These findings indicate that Xuefu Zhuyu decoction increases synapsin expression and improves neurological deficits alder traumatic brain injury.
文摘Synapsins serve as flagships among the presynaptic proteins due to their abundance on synaptic vesicles and contribution to synaptic communication. Several studies have emphasized the importance of this multi-gene family of neuron-specific phosphoproteins in maintaining brain physiology. In the recent times, increasing evidence has established the relevance of alterations in synapsins as a major determinant in many neurological disorders. Here,we give a comprehensive description of the diverse roles of the synapsin family and the underlying molecular mechanisms that contribute to several neurological disorders.These physiologically important roles of synapsins associated with neurological disorders are just beginning to be understood. A detailed understanding of the diversified expression of synapsins may serve to strategize novel therapeutic approaches for these debilitating neurological disorders.
基金supported by the National Natural Science Foundation of China,Nos.81974358,81772453(to DSX)。
文摘Paired associative stimulation has been used in stroke patients as an innovative recovery treatment.However,the mechanisms underlying the therapeutic effectiveness of paired associative stimulation on neurological function remain unclear.In this study,rats were randomly divided into middle cerebral occlusion model(MCAO)and paired associated magnetic stimulation(PAMS)groups.The MCAO rat model was produced by middle cerebral artery embolization.The PAMS group received PAMS on days 3 to 20 post MCAO.The MCAO group received sham stimulation,three times every week.Within 18 days after ischemia,rats were subjected to behavioral experiments—the foot-fault test,the balance beam walking test,and the ladder walking test.Balance ability was improved on days 15 and 17,and the footfault rate was less in their affected limb on day 15 in the PAMS group compared with the MCAO group.Western blot assay showed that the expression levels of brain derived neurotrophic factor,glutamate receptor 2/3,postsynaptic density protein 95 and synapsin-1 were significantly increased in the PAMS group compared with the MCAO group in the ipsilateral sensorimotor cortex on day 21.Resting-state functional magnetic resonance imaging revealed that regional brain activities in the sensorimotor cortex were increased in the ipsilateral hemisphere,but decreased in the contralateral hemisphere on day 20.By finite element simulation,the electric field distribution showed a higher intensity,of approximately 0.4 A/m^2,in the ischemic cortex compared with the contralateral cortex in the template.Together,our findings show that PAMS upregulates neuroplasticity-related proteins,increases regional brain activity,and promotes functional recovery in the affected sensorimotor cortex in the rat MCAO model.The experiments were approved by the Institutional Animal Care and Use Committee of Fudan University,China(approval No.201802173 S)on March 3,2018.
文摘目的:观察丹参注射液对急性脊髓损伤(S C I)大鼠的脊髓灰质突触相关蛋白突触体素(synaptophysin)、突触素(synapsin)的作用,并探讨其机制。方法:将144只SD雄性大鼠制作成SCI模型,随机分为观察组、对照组及SCI组,其中观察组给予丹参注射液,对照组给予甲基强的松龙,SCI组不予干预,运用原位杂交技术,观察伤后1d、3d、7d和14d脊髓灰质synaptophysin和synapsin变化。结果:观察组在伤后1d、3d,脊髓灰质synaptophysin和synapsin吸光度值与对照组和SCI组比较无显著性差异,在伤后7d、14d高于SCI组(P<0.01),与对照组比较无显著性差异。结论:丹参可以减轻SCI继发性损伤,是SCI早期理想的治疗药物。
文摘Synapsins are a family of phosphoproteins specifically associated with the cytoplasmic surface of the synaptic vesicle membrane, appearing to regulate neurotransmitter release, the formation and maintenance of synaptic contacts. They could induce the change of the synaptic plasticity to regulate various adaptation reactions, and change the cognitive behaviors. So we presume that if some cognitive behavior are damaged, synapsins would be changed as well. This gives us a new recognition of better diagnosis and therapy of cognitive disorder desease.
基金supported by the Key Laboratory of Brain Disease Bioinformation of Jiangsu Province of China,No.Jsbl1202
文摘Dendrite ramification affects synaptic strength and plays a crucial role in memory. Previous studies revealed a correlation between beta 2-adrenergic receptor dysfunction and Alzheimer's disease (AD), although the mechanism involved is still poorly understood. The current study investigated the potential effect of the selective β2-adrenergic receptor antagonist, ICI 118551 (ICI), on Aβ deposits and AD-related cognitive impairment. Morris water maze test results demonstrated that the performance of AD-transgenic (TG) mice treated with ICI (AD-TG/ICI) was significantly poorer compared with NaCl-treated AD-TG mice (AD-TG/NaCl), suggesting that β2-adrenergic receptor blockage by ICI might reduce the learning and memory abilities of mice. Golgi staining and immunohistochemical staining revealed that blockage of the β2-adrenergic receptor by ICI treatment decreased the number of dendritic branches, and ICI treatment in AD-TG mice decreased the expression of hippocampal synaptophysin and synapsin 1. Western blot assay results showed that the blockage of β2-adrener- gic receptor increased amyloid-β accumulation by downregulating hippocampal a-secretase activity and increasing the phosphorylation of amyloid precursor protein. These findings suggest that blocking the β2-adrenergic receptor inhibits dendrite ramification of hippocampal neurons in a mouse model of AD.