期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
结合SVR响应面与粒子群优化的有限元模型修正 被引量:1
1
作者 何子豪 吴邵庆 《振动与冲击》 EI CSCD 北大核心 2023年第15期163-172,240,共11页
提出了一种模型修正方法,可以在不依赖模型灵敏度的前提下,利用较少的计算量实现对结构有限元模型的参数修正。该方法首先构建代理模型替代结构有限元模型,通过计算少量样本点,训练支持向量回归机(support vector regression, SVR)预测... 提出了一种模型修正方法,可以在不依赖模型灵敏度的前提下,利用较少的计算量实现对结构有限元模型的参数修正。该方法首先构建代理模型替代结构有限元模型,通过计算少量样本点,训练支持向量回归机(support vector regression, SVR)预测参数所对应的响应;其次,以结构固有频率的残差为目标函数,利用粒子群优化算法实现全局寻优求解,得到修正后的有限元模型参数;进一步,以带孔平板为试验研究对象,基于实测数据验证了所提方法的有效性,并讨论不同参数、样本点数等对模型修正精度的影响;最后,用某卫星结构模型修正算例证明了该方法相对基于灵敏度分析的方法在计算耗时上的优势。该研究旨在为具有复杂参数-响应特征的结构模型修正提供技术支持。 展开更多
关键词 有限元模型修正 支持向量回归机(svr) svr响应面 粒子群优化 试验研究
下载PDF
Springback Prediction and Optimization of Variable Stretch Force Trajectory in Three-dimensional Stretch Bending Process 被引量:6
2
作者 TENG Fei ZHANG Wanxi +1 位作者 LIANG Jicai GAO Song 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1132-1140,共9页
Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback predicti... Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback prediction in stretch bending forming mainly focuses on artificial neural networks combined with the finite element simulation. There is a lack of springback prediction by support vector regression(SVR). In this paper, SVR is applied to predict springback in the three-dimensional stretch bending forming process, and variable stretch force trajectory is optimized. Six parameters of variable stretch force trajectory are chosen as the input parameters of the SVR model. Sixty experiments generated by design of experiments(DOE) are carried out to train and test the SVR model. The experimental results confirm that the accuracy of the SVR model is higher than that of artificial neural networks. Based on this model, an optimization algorithm of variable stretch force trajectory using particle swarm optimization(PSO) is proposed. The springback amount is used as the objective function. Changes of local thickness are applied as the criterion of forming constraints. The objection and constraints are formulated by response surface models. The precision of response surface models is examined. Six different stretch force trajectories are employed to certify springback reduction in the optimum stretch force trajectory, which can efficiently reduce springback. This research proposes a new method of springback prediction using SVR and optimizes variable stretch force trajectory to reduce springback. 展开更多
关键词 springback prediction support vector regression(svr response surface particle swarm optimization(PSO)
下载PDF
Multi-Response Variable Optimization in Sensor Drift Monitoring System Using Support Vector Regression
3
作者 In-Yong Seo Bok-Nam Ha Won Nam Koong 《通讯和计算机(中英文版)》 2012年第7期752-758,共7页
关键词 支持向量回归 传感器漂移 变量优化 监控系统 传感器信号 灵敏度 正常运行 安全操作
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部