In this paper, we present a new support vector machines-least squares support vector machines (LS-SVMs). While standard SVMs solutions involve solving quadratic or linear programming problems, the least squaresversion...In this paper, we present a new support vector machines-least squares support vector machines (LS-SVMs). While standard SVMs solutions involve solving quadratic or linear programming problems, the least squaresversion of SVMs corresponds to solving a set of linear equations, due to equality instead of inequality constraints inthe problem formulation. In LS-SVMs, Mercer condition is still applicable. Hence several type of kernels such aspolynomial, RBF's and MLP's can be used. Here we use LS-SVMs to time series prediction compared to radial basisfunction neural networks. We consider a noisy (Gaussian and uniform noise)Mackey-Glass time series. The resultsshow that least squares support vector machines is excellent for time series prediction even with high noise.展开更多
传统股票指数研究方法多停留在经验判断或简单的数据分析阶段,主要方法有基本面分析法、交易指标分析法等,这类分析方法或是对以往数据包含的信息使用效率比较低,或是对使用者的经验积累要求很高.近年来,数据挖掘方法在股市中已有很多...传统股票指数研究方法多停留在经验判断或简单的数据分析阶段,主要方法有基本面分析法、交易指标分析法等,这类分析方法或是对以往数据包含的信息使用效率比较低,或是对使用者的经验积累要求很高.近年来,数据挖掘方法在股市中已有很多成功的应用.在上述工作的基础上,从以下三方面提出一种改进的糊时间序列(fuzzy time series,FTS)模型并将其应用于股市预测中:一是提出了新的区间划分方法;二是提出新的模糊集权重公式;三是运用SVM分类算法进行模型修正,提出组合FTS模型.样本是选取1996~2003年上证指数数据,利用提出模型进行指数预测.实验结果表明,与多种重要FTS模型进行比较,本文提出的改进模型效果更优.展开更多
In order to realize the prediction of a chaotic time series of mine water discharge,an approach incorporating phase space reconstruction theory and statistical learning theory was studied.A differential entropy ratio ...In order to realize the prediction of a chaotic time series of mine water discharge,an approach incorporating phase space reconstruction theory and statistical learning theory was studied.A differential entropy ratio method was used to determine embedding parameters to reconstruct the phase space.We used a multi-layer adaptive best-fitting parameter search algorithm to estimate the LS-SVM optimal parameters which were adopted to construct a LS-SVM prediction model for the mine water chaotic time series.The results show that the simulation performance of a single-step prediction based on this LS-SVM model is markedly superior to that based on a RBF model.The multi-step prediction results based on LS-SVM model can reflect the development of mine water discharge and can be used for short-term forecasting of mine water discharge.展开更多
Some problems in using v-support vector machine(v-SVM)for the prediction of nonlinear time series arediscussed.The problems include selection of various net parameters,which affect the performance of prediction,mixtur...Some problems in using v-support vector machine(v-SVM)for the prediction of nonlinear time series arediscussed.The problems include selection of various net parameters,which affect the performance of prediction,mixtureof kernels,and decomposition cooperation linear programming v-SVM regression,which result in improvements of thealgorithm.Computer simulations in the prediction of nonlinear time series produced by Mackey-Glass equation andLorenz equation provide some improved results.展开更多
文摘In this paper, we present a new support vector machines-least squares support vector machines (LS-SVMs). While standard SVMs solutions involve solving quadratic or linear programming problems, the least squaresversion of SVMs corresponds to solving a set of linear equations, due to equality instead of inequality constraints inthe problem formulation. In LS-SVMs, Mercer condition is still applicable. Hence several type of kernels such aspolynomial, RBF's and MLP's can be used. Here we use LS-SVMs to time series prediction compared to radial basisfunction neural networks. We consider a noisy (Gaussian and uniform noise)Mackey-Glass time series. The resultsshow that least squares support vector machines is excellent for time series prediction even with high noise.
文摘传统股票指数研究方法多停留在经验判断或简单的数据分析阶段,主要方法有基本面分析法、交易指标分析法等,这类分析方法或是对以往数据包含的信息使用效率比较低,或是对使用者的经验积累要求很高.近年来,数据挖掘方法在股市中已有很多成功的应用.在上述工作的基础上,从以下三方面提出一种改进的糊时间序列(fuzzy time series,FTS)模型并将其应用于股市预测中:一是提出了新的区间划分方法;二是提出新的模糊集权重公式;三是运用SVM分类算法进行模型修正,提出组合FTS模型.样本是选取1996~2003年上证指数数据,利用提出模型进行指数预测.实验结果表明,与多种重要FTS模型进行比较,本文提出的改进模型效果更优.
基金supported by the Science and Research projects for Ph.D. candidates in the faculty of Xuzhou Normal University (No.08XLR12)Natural Science Foundation of Xuzhou Normal University (No.09XLA10)
文摘In order to realize the prediction of a chaotic time series of mine water discharge,an approach incorporating phase space reconstruction theory and statistical learning theory was studied.A differential entropy ratio method was used to determine embedding parameters to reconstruct the phase space.We used a multi-layer adaptive best-fitting parameter search algorithm to estimate the LS-SVM optimal parameters which were adopted to construct a LS-SVM prediction model for the mine water chaotic time series.The results show that the simulation performance of a single-step prediction based on this LS-SVM model is markedly superior to that based on a RBF model.The multi-step prediction results based on LS-SVM model can reflect the development of mine water discharge and can be used for short-term forecasting of mine water discharge.
基金National Natural Science Foundation of China under Grant No.90203008the Doctoral Foundation of Ministry of Education of China under Grant No.2002055009
文摘Some problems in using v-support vector machine(v-SVM)for the prediction of nonlinear time series arediscussed.The problems include selection of various net parameters,which affect the performance of prediction,mixtureof kernels,and decomposition cooperation linear programming v-SVM regression,which result in improvements of thealgorithm.Computer simulations in the prediction of nonlinear time series produced by Mackey-Glass equation andLorenz equation provide some improved results.