由于图像复杂背景信息的干扰,一般检测算法的应用受到了限制,致使异常检测的虚警率较高,而基于支持向量数据描述(Support Vector Data Description,SVDD)的异常检测算法不需要对背景或者目标数据作任何分布假设,可将原始数据映射到高维...由于图像复杂背景信息的干扰,一般检测算法的应用受到了限制,致使异常检测的虚警率较高,而基于支持向量数据描述(Support Vector Data Description,SVDD)的异常检测算法不需要对背景或者目标数据作任何分布假设,可将原始数据映射到高维特征空间进行异常检测。基于此,本文提出了一种基于非下采样Contourlet变换的异常检测SVDD算法。算法首先对高光谱数据进行NSCT(Nonsubsampled Contourlet Transform)分解,得到高频信息图像和低频信息图像;然后对低频信息作差,得到背景残差数据,抑制了背景信息;接着通过加权融合得到背景抑制后的高光谱图像,最后利用非线性SVDD将背景抑制后的高光谱图像映射到高维特征空间,完成异常目标的检测。通过仿真实验验证可知,所提出的算法与RX算法、KRX算法和未进行背景抑制的SVDD算法相比,具有较低的异常检测虚警率和优良的检测性能。展开更多
车辆事故预测是避免道路车辆事故发生的重要研究课题.以往的研究使用的事故数据集只包含地理情况、环境情况、交通情况等宏观因素,或者只包含车辆行为和驾驶员行为等微观因素.因为很难收集到同时包含2类因素的事故数据集,很少有研究将这...车辆事故预测是避免道路车辆事故发生的重要研究课题.以往的研究使用的事故数据集只包含地理情况、环境情况、交通情况等宏观因素,或者只包含车辆行为和驾驶员行为等微观因素.因为很难收集到同时包含2类因素的事故数据集,很少有研究将这2类因素结合起来,然而车辆事故往往是两者共同作用的结果.此外,在收集到的数据中没有可以用于预测的事故发生概率标签,所以目前多数的研究关注点只是在于事故是否发生而不能得到准确的概率值.然而在实际应用场景下,驾驶员需要的是不同级别的危险预警信号,而这种信号正是应该由事故概率值决定的.2019年发布的事故宏观因素数据集OSU(Ohio State University)与宏观因素数据集FARS(fatality analysis reporting system)和微观因素数据集SHRP2(strategic highway research program 2)都具有一些相同的特征,为它们的融合提供了机遇.因此,首先得到了一个同时包含宏观和微观因素的数据集,其中事故数据(正样本)融合自OSU、FARS数据集,以及与SHRP2分布相同的数据集Sim-SHRP2(simulated strategic highway research program 2),而安全驾驶数据(负样本)则由自己驾驶汽车获得.然后,针对收集到的数据中没有概率标签的问题,还设计了一个概率级别的无监督深度学习框架来预测准确的概率值,该框架使用迭代的方式为数据集生成准确的概率标签,并使用这些概率标签来进行训练.实验结果表明,该框架可以使用所得到的数据集来灵敏而准确地预测车辆事故.展开更多
文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC...文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。展开更多
文摘车辆事故预测是避免道路车辆事故发生的重要研究课题.以往的研究使用的事故数据集只包含地理情况、环境情况、交通情况等宏观因素,或者只包含车辆行为和驾驶员行为等微观因素.因为很难收集到同时包含2类因素的事故数据集,很少有研究将这2类因素结合起来,然而车辆事故往往是两者共同作用的结果.此外,在收集到的数据中没有可以用于预测的事故发生概率标签,所以目前多数的研究关注点只是在于事故是否发生而不能得到准确的概率值.然而在实际应用场景下,驾驶员需要的是不同级别的危险预警信号,而这种信号正是应该由事故概率值决定的.2019年发布的事故宏观因素数据集OSU(Ohio State University)与宏观因素数据集FARS(fatality analysis reporting system)和微观因素数据集SHRP2(strategic highway research program 2)都具有一些相同的特征,为它们的融合提供了机遇.因此,首先得到了一个同时包含宏观和微观因素的数据集,其中事故数据(正样本)融合自OSU、FARS数据集,以及与SHRP2分布相同的数据集Sim-SHRP2(simulated strategic highway research program 2),而安全驾驶数据(负样本)则由自己驾驶汽车获得.然后,针对收集到的数据中没有概率标签的问题,还设计了一个概率级别的无监督深度学习框架来预测准确的概率值,该框架使用迭代的方式为数据集生成准确的概率标签,并使用这些概率标签来进行训练.实验结果表明,该框架可以使用所得到的数据集来灵敏而准确地预测车辆事故.
文摘文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。