针对脉冲噪声和随机噪声对经验模式分解所产生的模式混叠和端点效应问题,提出了一种中值滤波-奇异值分解(Median Filter-Singular Value Decomposition,简称MF-SVD)联合降噪的优化经验模式分解方法.利用中值滤波对脉冲噪声的去除能力和...针对脉冲噪声和随机噪声对经验模式分解所产生的模式混叠和端点效应问题,提出了一种中值滤波-奇异值分解(Median Filter-Singular Value Decomposition,简称MF-SVD)联合降噪的优化经验模式分解方法.利用中值滤波对脉冲噪声的去除能力和SVD对随机噪声的抑制能力,同时为了解决SVD降噪中降噪阶次难以确定的问题,提出了能量差分谱的概念改善了SVD降噪能力.联合中值滤波和改进后的SVD降噪方法去除脉冲噪声和随机噪声干扰,有效改善经验模式分解质量.将该方法应用到航空发动机振动试飞数据分析中,很好地获取了表征自由涡轮转子和燃气发生器转子振动特征的数据分量,有效抑制了模式混叠和端点效应,验证了优化经验模式分解方法应用的有效性.展开更多
针对管道压力泄漏信号去噪的问题,提出基于敏感因子奇异值分解(Singular Value Decomposition,SVD)的管道泄漏压力信号去噪的方法。该方法首先对原始信号构造Hankel矩阵再进行SVD分解,将分解后得到的分量信号利用敏感因子找出敏感分量,...针对管道压力泄漏信号去噪的问题,提出基于敏感因子奇异值分解(Singular Value Decomposition,SVD)的管道泄漏压力信号去噪的方法。该方法首先对原始信号构造Hankel矩阵再进行SVD分解,将分解后得到的分量信号利用敏感因子找出敏感分量,最后通过定位因子选择敏感分量所对应的奇异值进行信号重构,并用该方法对矿浆管道实验平台运行中采集到的压力信号进行降噪处理。实验结果表明,该方法有效地去除矿浆管道的压力信号中的噪声,作为信号的预处理为管道泄漏检测和定位提供良好的基础。此外,该方法与小波去噪方法进行对比,结果表明,该方法具有更好的去噪效果。展开更多
为了更有效地进行图像去噪,提出了一种基于分块奇异值分解(Singular value decomposition,SVD)的两级图像去噪方法,该方法首先将含噪图像中具有相似结构的图像块组织成具有很强相关性的图像块组;然后,利用二维奇异值分解去除图像块组中...为了更有效地进行图像去噪,提出了一种基于分块奇异值分解(Singular value decomposition,SVD)的两级图像去噪方法,该方法首先将含噪图像中具有相似结构的图像块组织成具有很强相关性的图像块组;然后,利用二维奇异值分解去除图像块组中每个相似块的内部相关性,利用一维奇异值分解去除相似图像块组之间的冗余;最后,通过硬阈值方法收缩变换系数实现图像与噪声的有效分离.为了进一步提高去噪效果,对含噪图像再次进行上述操作.不同的是,在第二级去噪过程中,相似图像块组根据第一级估计出的图像计算获得且相似图像块间的相关性通过离散余弦变换去除.仿真实验表明,提出的两级图像去噪算法不仅可以较大程度地去除图像噪声,还能有效保留图像细节,取得了良好的去噪效果.展开更多
为了提高电能质量复合扰动(PQMD)信号的去噪指标,实现扰动信号特征的准确检测,提出一种自适应多尺度SVD(Adaptive Multi-resolution Singular Value Decomposition,AMSVD)去噪新算法及数学框架。该算法首先分析了高斯白噪声奇异值分布...为了提高电能质量复合扰动(PQMD)信号的去噪指标,实现扰动信号特征的准确检测,提出一种自适应多尺度SVD(Adaptive Multi-resolution Singular Value Decomposition,AMSVD)去噪新算法及数学框架。该算法首先分析了高斯白噪声奇异值分布情况及多尺度SVD消噪原理,针对不同尺度下的噪声近似与细节信号奇异值差值规律,确定出最佳消噪尺度的约束条件,由此实现噪声先验信息未知的自适应消噪方法。研究结果表明,在对不同噪声方差下的电能质量复合扰动去噪处理中,AMSVD消噪效果优于其他5种方法。为了进一步验证AMSVD算法去噪后特征量检测的准确性,采用希尔伯特黄变换(HHT)提取扰动特征信息,仿真结果表明该算法具有可行性和鲁棒性。展开更多
文摘针对脉冲噪声和随机噪声对经验模式分解所产生的模式混叠和端点效应问题,提出了一种中值滤波-奇异值分解(Median Filter-Singular Value Decomposition,简称MF-SVD)联合降噪的优化经验模式分解方法.利用中值滤波对脉冲噪声的去除能力和SVD对随机噪声的抑制能力,同时为了解决SVD降噪中降噪阶次难以确定的问题,提出了能量差分谱的概念改善了SVD降噪能力.联合中值滤波和改进后的SVD降噪方法去除脉冲噪声和随机噪声干扰,有效改善经验模式分解质量.将该方法应用到航空发动机振动试飞数据分析中,很好地获取了表征自由涡轮转子和燃气发生器转子振动特征的数据分量,有效抑制了模式混叠和端点效应,验证了优化经验模式分解方法应用的有效性.
文摘针对管道压力泄漏信号去噪的问题,提出基于敏感因子奇异值分解(Singular Value Decomposition,SVD)的管道泄漏压力信号去噪的方法。该方法首先对原始信号构造Hankel矩阵再进行SVD分解,将分解后得到的分量信号利用敏感因子找出敏感分量,最后通过定位因子选择敏感分量所对应的奇异值进行信号重构,并用该方法对矿浆管道实验平台运行中采集到的压力信号进行降噪处理。实验结果表明,该方法有效地去除矿浆管道的压力信号中的噪声,作为信号的预处理为管道泄漏检测和定位提供良好的基础。此外,该方法与小波去噪方法进行对比,结果表明,该方法具有更好的去噪效果。
文摘为了更有效地进行图像去噪,提出了一种基于分块奇异值分解(Singular value decomposition,SVD)的两级图像去噪方法,该方法首先将含噪图像中具有相似结构的图像块组织成具有很强相关性的图像块组;然后,利用二维奇异值分解去除图像块组中每个相似块的内部相关性,利用一维奇异值分解去除相似图像块组之间的冗余;最后,通过硬阈值方法收缩变换系数实现图像与噪声的有效分离.为了进一步提高去噪效果,对含噪图像再次进行上述操作.不同的是,在第二级去噪过程中,相似图像块组根据第一级估计出的图像计算获得且相似图像块间的相关性通过离散余弦变换去除.仿真实验表明,提出的两级图像去噪算法不仅可以较大程度地去除图像噪声,还能有效保留图像细节,取得了良好的去噪效果.
文摘为了提高电能质量复合扰动(PQMD)信号的去噪指标,实现扰动信号特征的准确检测,提出一种自适应多尺度SVD(Adaptive Multi-resolution Singular Value Decomposition,AMSVD)去噪新算法及数学框架。该算法首先分析了高斯白噪声奇异值分布情况及多尺度SVD消噪原理,针对不同尺度下的噪声近似与细节信号奇异值差值规律,确定出最佳消噪尺度的约束条件,由此实现噪声先验信息未知的自适应消噪方法。研究结果表明,在对不同噪声方差下的电能质量复合扰动去噪处理中,AMSVD消噪效果优于其他5种方法。为了进一步验证AMSVD算法去噪后特征量检测的准确性,采用希尔伯特黄变换(HHT)提取扰动特征信息,仿真结果表明该算法具有可行性和鲁棒性。