Calibration of seismic reflectors appearing in the crust of the Chinese continent sci- entific drilling site can be completed through the correlation studies between direct evidences, such as the drill cores, and geop...Calibration of seismic reflectors appearing in the crust of the Chinese continent sci- entific drilling site can be completed through the correlation studies between direct evidences, such as the drill cores, and geophysical signatures; therefore the interpretation of geophysical data could produce reliable results of crustal structure and composition. On the other hand, there are two Cenozoic volcanoes close to the scientific drilling site; analyzing composition of xenoliths existent in the volcanoes and evaluating their seismic velocities can also offer information about the mantle and lower crust. After the calibration via cores and well-logging data, the seismic re- flectors appearing in the UHP belt can be caused by lithological changes within the UHP rock slice, ductile shearing rock-suites, and later fracture zones. Among these sources, ductile shearing resulted in displacement and detachment of original rock-sheets, producing some rock-interbeds of several hundred meters thick that are named the ductile shearing rock-suites. A suite consists of mylonized gneiss and eclogite slices that underwent shearing, becoming the major mechanism responsible to generate regional strong reflections. The UHP rock-slice is characterized by complicated structures and high density, high seismic velocity and high electri- cal resistivity, its thickness is usually less than 11 km. Velocity and density of the gneiss-layer beneath gradually tend to normal with increasing depth. Based on the xenoliths we can infer that the middle crust contains a lot of gneisses, and the lower crust consists of different granulites. The lithospheric mantle has multi-layer structures and consists mainly of spinal lherzolite and harzburgite, implying late Mesozoic lithospheric thinning. The seismic fabrics with different ori- gins were possible products of different geodynamic processes. For instance, the UHP rock-slice was produced by the UHP metamorphic process and the exhumation of subducted supercrustal rocks after the Triassic collision betw展开更多
Combined with field studies, microscopic observations, and EBSD fabric analysis, we defined a possible Early Cretaceous metamorphic core complex (MCC) in the Wulian area along the Sulu orogenic belt in eastern China...Combined with field studies, microscopic observations, and EBSD fabric analysis, we defined a possible Early Cretaceous metamorphic core complex (MCC) in the Wulian area along the Sulu orogenic belt in eastern China. The MCC is of typical Cordilleran type with five elements: (1) a master detachment fault and sheared rocks beneath it, a lower plate of crystalline rockswith (2) middle crust metamorphic rocks, (3) syn-kinematic plutons, (4) an upper plate of weakly deformed Proterozoic metamorphic rocks, and (5) Cretaceous volcanic-sedimentary rocks in the supradetachment basin. Some postkinematic incursions cut across the master detachment fault zone and two plates. In the upper plate, Zhucheng (诸城) Basin basement consists of the Proterozoic Fenzishan (粉子山) Group, Jinning period granite (762–834 Ma). The s u pr a de tac hme nt ba sin a bo ve the Proterozoic rocks is filled with the Early Cretaceous Laiyang (莱阳) (~135–125 Ma) and Qingshan (青山) groups (120–105 Ma), as wellas the Late Cretaceous Wangshi (王氏) Group (85–65 Ma). The detachment fault zone is developed at the base and margin of the superposed basin. Pseudotachylite and micro breccia layers located at the top of the detachment fault. Stretching lineation and foliation are well developed in the ductile shear belt in the detachment faults. The stretching lineation indicates a transport direction of nearly east to west on the whole, while the foliations trend WNW, WSW, and SE. Protomylonite, mylonite, and ultramylonite are universally developed in the faults, transitioning to mylonitic gneiss, and finally to gneiss downward. Microstructure and quartz preferred orientation show that the mylonites formed at high greenschist facies to low greenschist facies as a whole. The footwall metamorphic rock series of the Wulian MCC are chiefly UHP (ultrahigh pressure) metamorphic rocks. Syntectonic rocks developed simultaneously with the Wulian MCC detachment and extension. Geo展开更多
An unusual zircon SHRIMP dating result of a granitic gneiss from the Qinglongshan eclogite-gneiss roadcut section is presented in this paper. The very peculiar and complicated internal structures, as well as the very ...An unusual zircon SHRIMP dating result of a granitic gneiss from the Qinglongshan eclogite-gneiss roadcut section is presented in this paper. The very peculiar and complicated internal structures, as well as the very low Th/U ratios (0.01-0.08) of the zircons indicate that they were formed by metamorphic recrystallization. Strongly in contrast with previously published zircon U-Pb ages of the Dabie-Sulu UHP metamorphic rocks where protolith ages of 600-800 Ma are commonly recorded, only metamorphic age of 218±5 Ma, defined by 18 analytical spots either in rim or in core of zircons, are recorded in this granitic gneiss. This age represents the time of the complete metamorphic recrystallization overprint on primary magmatic zircons. The recrystallization was derived by the UHP metamorphism, and was strengthened by the early stage of retrograde metamorphic fluid activity.展开更多
Because of the discovery of ultrahigh pressure metamorphic (UHPM) belt beneath the Sulu (Jiangsu Province-Shandong Province) orogen, this area has become a focused subject of current geoscience, as it has a close rela...Because of the discovery of ultrahigh pressure metamorphic (UHPM) belt beneath the Sulu (Jiangsu Province-Shandong Province) orogen, this area has become a focused subject of current geoscience, as it has a close relationship with the evolution of the orogen and the neighboring North China craton. Probing the deep structure beneath this area would be of great significance for the geological interpretation of this issue. In this study, we make an analysis of magnetotelluric (MT) data along a profile across the Sulu orogen to provide evidence of deep structure below this region. The profile begins in west from the North China block, extending in S129°E, across the Tan-Lu fault, Sulu UHPM zone, and Sulu high pressure metamorphic (HPM) zone, and terminates in the Yangtze block in east. We use the nonlinear conjugate gradient method and TE-TM combined mode to perform inversion and interpretation of the MT data, and obtain an electrical structure image above depth of 150 km along the profile. It shows that the structure can be divided into seven sections in lateral direction, between which the electric boundaries coincide well with the major faults, such as the Tan-Lu, Haizhou-Siyang, and Jiashan-Xiangshui faults. In vertical direction the electrical structure can be subdivided into six layers of different resistivities. It is noted that there exist high-conductivity areas in crust below the North China block and Yangtze block, while such a feature is not present beneath the Sulu orogen, which is very different from the Dabie orogen. It is also observed that a fairly continuous zone of relatively low-resistivity exists at depths of 50–90 km of the electrical structure image, which is presumably a weak zone in the uppermost mantle. Just below this low-resistivity zone are the relatively high- resistivity layer of the North China block, relatively low-resistivity layer of the Sulu orogen, and relatively high-resistivity layer of the Yangtze block, all in the shallow upper mantle, respectively. From the whole 2D electr展开更多
The Sulu Orogen constitutes the eastern part of the Sulu-Dabie Orogen formed by Triassic collision between the Sino-Korean and Yangtze plates. An HP Slice Ⅰ and two UHP slices Ⅱ and Ⅲ with contrasting subduction an...The Sulu Orogen constitutes the eastern part of the Sulu-Dabie Orogen formed by Triassic collision between the Sino-Korean and Yangtze plates. An HP Slice Ⅰ and two UHP slices Ⅱ and Ⅲ with contrasting subduction and exhumation histories within the Sulu Orogen were postulated. This study presents the metamorphic P-T paths of eclogites from the two UHP belts constructed by petrog- raphy, mineral chemistry and Perple_X P-T pseudosection modeling in the MnC(K)NFMASHO system. Eclogites from Slice Ⅲ mainly consist of omphacite, garnet and quartz, with minor rutile, ilmenite, amphibole and phengite. Eclogites from Slice Ⅱ show a porphyroblastic texture with epidote porphyroblasts and garnet, omphacite, phengite, quartz and rutile in matrix. Pseudosection modeling reveals that eclogites from Slice Ⅱ witness a peak metamorphism of eclogite-facies under conditions of 3.1-3.3 GPa and 660-690 ℃, and a retrograde cooling decompression process. The eclogites from Slice Ⅲ record a heating decompressive P-T path with a peak-P stage of 3.2 GPa and 840℃ and a peak-T stage of 2.4 GPa and 950 ℃, suggesting an apparent granulite-facies metamorphism overprint during exhumation. Both eclogites recorded clockwise P-T paths with peak P-T conditions suggesting a subduction beneath the Sino-Korean Plate to -100-105 km depth. Combined with tectonic scenarios from previous studies, it is concluded that the two UHP crustal slices in the Sulu terrane have a similar geodynamic evolution, but the UHP rocks in Slice Ⅱ exhumed after the eclogitic peak-pressure conditions earlier than that of Slice Ⅲ. The existence of Slice Ⅱ diminished the buoyancy force on Slice Ⅲ, resulting in a granulite-facies overprint on Slice Ⅲ. The Sulu orogenic belt is made up of different crustal slices that underwent different subduction and exhumation histories, rather than a single unit.展开更多
The present day observed tectonic framework of ultrahigh pressure (UHP) metamorphic belt in the Dabie Sulu region was dominantly formed by an extensional process at 200-170 Ma, under amphibolite facies conditions, f...The present day observed tectonic framework of ultrahigh pressure (UHP) metamorphic belt in the Dabie Sulu region was dominantly formed by an extensional process at 200-170 Ma, under amphibolite facies conditions, following the Triassic collision between the Sino Korean and Yangtze cratons. UHP relic structures, including massive eclogites with a weak foliation, UHP shear zones and A type folds, that are preserved in less retrograde metamorphism and deformation overprinted eclogite lenses can be recognized using the tectonic analysis. Examples are drawn from the Chengmagang area and Hejiawan area, Hubei; Bixiling area, Anhui, and Donghai area, northern Jiangsu. A speculative kinematic model is proposed for the collision between the cratons based on the UHP relic structures studied, in combination with the data of petrography, geochronology and P T path of UHP metamorphic rocks in the studied region which were reported in literature. It is stressed that only the early UHP relic structures, particularly, regionally consistent foliation and stretching lineations, record and reflect the formation of the UHP metamorphic rocks, and the relative dynamic and kinematic process related to the Triassic NNE directed oblique collision between the Sino Korean and Yangtze cratons.展开更多
In order to constrain temperature during subduction and subsequent exhumation of fel- sic continental crust, we carried out a Ti-in-zircon thermometer coupled with zircon internal structure and U-Pb age on migmatitic ...In order to constrain temperature during subduction and subsequent exhumation of fel- sic continental crust, we carried out a Ti-in-zircon thermometer coupled with zircon internal structure and U-Pb age on migmatitic gneisses from the Weihai region in the Sulu ultra-high pres- sure (UHP) metamorphic terrane, eastern China. The Weihai migmatitic gneisses are composed of in- tercalated compositional layers of melanosome and plagioclase (Pl)-rich lencosome and K-feldspar (Kfs)-rich pegmatite veins. Four stages of zircon growth were recognized in the Weihai migmatitic gneisses. They successively recorded informations of protolith, prograde metamorphism, decompres- sional partial melting during early stage exhumation and subsequent fractional crystallization of pri- mary melt during later stage cooling exhumation. The inherited cores in zircon from the melanosome and the Pl-rich leucosome suggest that the pro- tolith of the migmatitic gneiss is Mid- Neoproterozoic (-780 Ma) magmatic rock. Metamorphic zircons with concordant ages ranging from 243 to 256 Ma occur as over- growth mantles on the protolith magmatic zir- con cores. The estimated growth temperatures (625-717 "C) of the metamorphic zircons have a negative correlation with their ages, indicating a progressive metamorphism in HP eciogite-facies condition during subduction. Zircon recrystal- lized rims (228-2 Ma) in the PI-rich ieucosome layers provide the lower limit of the decompress-sional partial melting time during exhumation. The ages from 228^-2 to 219~2 Ma recorded in the Pl-rich leucosome and the Kfs-rich pegmatite vein, respectively, suggest the duration of the fractional crystallization of primary melt during exhumation. The calculated growth temperatures of the zircon rims from the Pl-rich leucosome range from 858 to 739 , and the temperatures of new growth zircon grains (219±2 Ma) in Kfs-rich vein are between 769 and 529 . The estimated temperatures have a positive correlation with ages from the Pl-rich leucosome to 展开更多
As a minor phase, kyanite has been repeatedly shown to have experienced ultrahigh pressure (UHP) metamorphism together with its host eclogites. Thus, it could play some role in trans- porting water into the deep ear...As a minor phase, kyanite has been repeatedly shown to have experienced ultrahigh pressure (UHP) metamorphism together with its host eclogites. Thus, it could play some role in trans- porting water into the deep earth. Here we present a detailed investigation of water concentrations of kyanite, and for reference, of garnet and omphacite from four Maobei eclogites in the Sulu orogenic belt, eastern China. Fourier transform infrared (FTIR) measurements show that kyanites, garnets, and omphacites all have distinct hydroxyl absorption bands due to OH groups bound in their crystal struc- ture. The FTIR profile analyses on ten grains from different samples reveal a homogeneous distribution of water across kyanite, suggesting insignificant water loss during exhumation. The calculated water concentrations in kyanite (21 wt ppm-41 wt ppm) are comparable to those reported previously for kyanite from various geological occurrences when using the most recent calibration. They are however much lower compared with those in garnet (46 wt ppm-83 wt ppm) and omphacite (302 wt ppm-548 wt ppm) from the Maobei eclogites. This implies that kyanite is not a major water carrier in eclogites con- sidering its low volume fraction and contributes negligibly to transport water into the deep mantle ac- companying subducted oceanic crust until its possible transformation to AISiO3OH.展开更多
The Sulu Orogen preserves the Neoproterozoic tectonic-magmatic events,corresponding to the breaking up of the Rodinia supercontinent.The ages and petrogenesis of meta-igneous rocks in the Liansandao area in the northe...The Sulu Orogen preserves the Neoproterozoic tectonic-magmatic events,corresponding to the breaking up of the Rodinia supercontinent.The ages and petrogenesis of meta-igneous rocks in the Liansandao area in the northern Sulu Orogen are not well-constrained.This study reports zircon U-Pb ages and Hf isotopes of these rocks from the Liansandao area.Three meta-igneous rock samples give similar weighted mean 206 Pb/238 U ages of 744±11,767±12,and 762±15 Ma,respectively,indicating the Neoproterozoic crystallization ages.These rocks formed coevally with the Wulian and Yangkou intrusions that located along the Yantai-Qingdao-Wulian fault zone.The Neoproterozoic ages indicate that the meta-igneous rocks from the Liansandao area have affinity to the Yangtze Block.The three samples haveεHf(t)values of-7.2–-10.5,-6.0–-17.5,and-6.8–-12.0,respectively.These negativeεHf(t)values indicate a primarily crustal source.However,the widely variousεHf(t)values that are higher than the continental crust,suggesting magma mixing between mantle-derived materials and the continental crust or source heterogeneity.Combined with the Hf model ages and geochemical characteristics,the monzodiorite(sample LSD-2)is most likely to be mantle-derived magma then interacted with ancient continental crust,and the granitic protolith(samples LSD-1 and LSD-3)in the Liansandao area might derive from the re-melting of a Paleoproterozoic continental crust at^750 Ma,resulting from the upwelling and underplating of mantle-derived magma formed in an extensional setting due to the break-up of the Rodinia supercontinent.展开更多
基金supported by Researches of Chinese Continental Scientific Dilling Project,the National Bas ic Research Progam of China(Grant No.2 003CB716505)the Na tional Natural Science Foundation of China(Grant No.40174013)
文摘Calibration of seismic reflectors appearing in the crust of the Chinese continent sci- entific drilling site can be completed through the correlation studies between direct evidences, such as the drill cores, and geophysical signatures; therefore the interpretation of geophysical data could produce reliable results of crustal structure and composition. On the other hand, there are two Cenozoic volcanoes close to the scientific drilling site; analyzing composition of xenoliths existent in the volcanoes and evaluating their seismic velocities can also offer information about the mantle and lower crust. After the calibration via cores and well-logging data, the seismic re- flectors appearing in the UHP belt can be caused by lithological changes within the UHP rock slice, ductile shearing rock-suites, and later fracture zones. Among these sources, ductile shearing resulted in displacement and detachment of original rock-sheets, producing some rock-interbeds of several hundred meters thick that are named the ductile shearing rock-suites. A suite consists of mylonized gneiss and eclogite slices that underwent shearing, becoming the major mechanism responsible to generate regional strong reflections. The UHP rock-slice is characterized by complicated structures and high density, high seismic velocity and high electri- cal resistivity, its thickness is usually less than 11 km. Velocity and density of the gneiss-layer beneath gradually tend to normal with increasing depth. Based on the xenoliths we can infer that the middle crust contains a lot of gneisses, and the lower crust consists of different granulites. The lithospheric mantle has multi-layer structures and consists mainly of spinal lherzolite and harzburgite, implying late Mesozoic lithospheric thinning. The seismic fabrics with different ori- gins were possible products of different geodynamic processes. For instance, the UHP rock-slice was produced by the UHP metamorphic process and the exhumation of subducted supercrustal rocks after the Triassic collision betw
基金supported by the National Natural Science Foundation of China(Nos.90814006,91214301)the Natural Science Foundation of Shandong Province(No.ZR2009EQ002)+1 种基金the Foundation of the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals(No.DMSM201005)the National Key Basic Research Development Program (973Program) of China(No.2012CB723104)
文摘Combined with field studies, microscopic observations, and EBSD fabric analysis, we defined a possible Early Cretaceous metamorphic core complex (MCC) in the Wulian area along the Sulu orogenic belt in eastern China. The MCC is of typical Cordilleran type with five elements: (1) a master detachment fault and sheared rocks beneath it, a lower plate of crystalline rockswith (2) middle crust metamorphic rocks, (3) syn-kinematic plutons, (4) an upper plate of weakly deformed Proterozoic metamorphic rocks, and (5) Cretaceous volcanic-sedimentary rocks in the supradetachment basin. Some postkinematic incursions cut across the master detachment fault zone and two plates. In the upper plate, Zhucheng (诸城) Basin basement consists of the Proterozoic Fenzishan (粉子山) Group, Jinning period granite (762–834 Ma). The s u pr a de tac hme nt ba sin a bo ve the Proterozoic rocks is filled with the Early Cretaceous Laiyang (莱阳) (~135–125 Ma) and Qingshan (青山) groups (120–105 Ma), as wellas the Late Cretaceous Wangshi (王氏) Group (85–65 Ma). The detachment fault zone is developed at the base and margin of the superposed basin. Pseudotachylite and micro breccia layers located at the top of the detachment fault. Stretching lineation and foliation are well developed in the ductile shear belt in the detachment faults. The stretching lineation indicates a transport direction of nearly east to west on the whole, while the foliations trend WNW, WSW, and SE. Protomylonite, mylonite, and ultramylonite are universally developed in the faults, transitioning to mylonitic gneiss, and finally to gneiss downward. Microstructure and quartz preferred orientation show that the mylonites formed at high greenschist facies to low greenschist facies as a whole. The footwall metamorphic rock series of the Wulian MCC are chiefly UHP (ultrahigh pressure) metamorphic rocks. Syntectonic rocks developed simultaneously with the Wulian MCC detachment and extension. Geo
基金the National Natural Science Foundation of China(No.40399142 , No.40372037) Centre National de la Recherche Scientifique(CNRS)of France.
文摘An unusual zircon SHRIMP dating result of a granitic gneiss from the Qinglongshan eclogite-gneiss roadcut section is presented in this paper. The very peculiar and complicated internal structures, as well as the very low Th/U ratios (0.01-0.08) of the zircons indicate that they were formed by metamorphic recrystallization. Strongly in contrast with previously published zircon U-Pb ages of the Dabie-Sulu UHP metamorphic rocks where protolith ages of 600-800 Ma are commonly recorded, only metamorphic age of 218±5 Ma, defined by 18 analytical spots either in rim or in core of zircons, are recorded in this granitic gneiss. This age represents the time of the complete metamorphic recrystallization overprint on primary magmatic zircons. The recrystallization was derived by the UHP metamorphism, and was strengthened by the early stage of retrograde metamorphic fluid activity.
基金Supported by National Natural Science Foundation of China (Grant No. 40534023)Director Foundation of Institute of Geology, China Earthquake Administration (Grant No. DF-IGCEA-0608-2-16)
文摘Because of the discovery of ultrahigh pressure metamorphic (UHPM) belt beneath the Sulu (Jiangsu Province-Shandong Province) orogen, this area has become a focused subject of current geoscience, as it has a close relationship with the evolution of the orogen and the neighboring North China craton. Probing the deep structure beneath this area would be of great significance for the geological interpretation of this issue. In this study, we make an analysis of magnetotelluric (MT) data along a profile across the Sulu orogen to provide evidence of deep structure below this region. The profile begins in west from the North China block, extending in S129°E, across the Tan-Lu fault, Sulu UHPM zone, and Sulu high pressure metamorphic (HPM) zone, and terminates in the Yangtze block in east. We use the nonlinear conjugate gradient method and TE-TM combined mode to perform inversion and interpretation of the MT data, and obtain an electrical structure image above depth of 150 km along the profile. It shows that the structure can be divided into seven sections in lateral direction, between which the electric boundaries coincide well with the major faults, such as the Tan-Lu, Haizhou-Siyang, and Jiashan-Xiangshui faults. In vertical direction the electrical structure can be subdivided into six layers of different resistivities. It is noted that there exist high-conductivity areas in crust below the North China block and Yangtze block, while such a feature is not present beneath the Sulu orogen, which is very different from the Dabie orogen. It is also observed that a fairly continuous zone of relatively low-resistivity exists at depths of 50–90 km of the electrical structure image, which is presumably a weak zone in the uppermost mantle. Just below this low-resistivity zone are the relatively high- resistivity layer of the North China block, relatively low-resistivity layer of the Sulu orogen, and relatively high-resistivity layer of the Yangtze block, all in the shallow upper mantle, respectively. From the whole 2D electr
基金funded by the National Key R & D Program of China (No. 2016YFC0600403)the State Scholarship Fund of the China Scholarship Council (CSC) to Yilong Lithe Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Nos. CUGL170404, CUG160232)
文摘The Sulu Orogen constitutes the eastern part of the Sulu-Dabie Orogen formed by Triassic collision between the Sino-Korean and Yangtze plates. An HP Slice Ⅰ and two UHP slices Ⅱ and Ⅲ with contrasting subduction and exhumation histories within the Sulu Orogen were postulated. This study presents the metamorphic P-T paths of eclogites from the two UHP belts constructed by petrog- raphy, mineral chemistry and Perple_X P-T pseudosection modeling in the MnC(K)NFMASHO system. Eclogites from Slice Ⅲ mainly consist of omphacite, garnet and quartz, with minor rutile, ilmenite, amphibole and phengite. Eclogites from Slice Ⅱ show a porphyroblastic texture with epidote porphyroblasts and garnet, omphacite, phengite, quartz and rutile in matrix. Pseudosection modeling reveals that eclogites from Slice Ⅱ witness a peak metamorphism of eclogite-facies under conditions of 3.1-3.3 GPa and 660-690 ℃, and a retrograde cooling decompression process. The eclogites from Slice Ⅲ record a heating decompressive P-T path with a peak-P stage of 3.2 GPa and 840℃ and a peak-T stage of 2.4 GPa and 950 ℃, suggesting an apparent granulite-facies metamorphism overprint during exhumation. Both eclogites recorded clockwise P-T paths with peak P-T conditions suggesting a subduction beneath the Sino-Korean Plate to -100-105 km depth. Combined with tectonic scenarios from previous studies, it is concluded that the two UHP crustal slices in the Sulu terrane have a similar geodynamic evolution, but the UHP rocks in Slice Ⅱ exhumed after the eclogitic peak-pressure conditions earlier than that of Slice Ⅲ. The existence of Slice Ⅱ diminished the buoyancy force on Slice Ⅲ, resulting in a granulite-facies overprint on Slice Ⅲ. The Sulu orogenic belt is made up of different crustal slices that underwent different subduction and exhumation histories, rather than a single unit.
基金This paper is supported by the NNSF of China( Nos.497940 41 49772 14 6and49972 0 67) and Major State Basic Research Developme
文摘The present day observed tectonic framework of ultrahigh pressure (UHP) metamorphic belt in the Dabie Sulu region was dominantly formed by an extensional process at 200-170 Ma, under amphibolite facies conditions, following the Triassic collision between the Sino Korean and Yangtze cratons. UHP relic structures, including massive eclogites with a weak foliation, UHP shear zones and A type folds, that are preserved in less retrograde metamorphism and deformation overprinted eclogite lenses can be recognized using the tectonic analysis. Examples are drawn from the Chengmagang area and Hejiawan area, Hubei; Bixiling area, Anhui, and Donghai area, northern Jiangsu. A speculative kinematic model is proposed for the collision between the cratons based on the UHP relic structures studied, in combination with the data of petrography, geochronology and P T path of UHP metamorphic rocks in the studied region which were reported in literature. It is stressed that only the early UHP relic structures, particularly, regionally consistent foliation and stretching lineations, record and reflect the formation of the UHP metamorphic rocks, and the relative dynamic and kinematic process related to the Triassic NNE directed oblique collision between the Sino Korean and Yangtze cratons.
基金supported by the National Key Basic Research Program of China (No.2009CB825001)the National Natural Science Foundation of China (Nos.40603002,41072046,and 41090371)the Fundamental Research Funds for the Central Universities,China University of Geosciences,Wuhan (No.CUG120121)
文摘In order to constrain temperature during subduction and subsequent exhumation of fel- sic continental crust, we carried out a Ti-in-zircon thermometer coupled with zircon internal structure and U-Pb age on migmatitic gneisses from the Weihai region in the Sulu ultra-high pres- sure (UHP) metamorphic terrane, eastern China. The Weihai migmatitic gneisses are composed of in- tercalated compositional layers of melanosome and plagioclase (Pl)-rich lencosome and K-feldspar (Kfs)-rich pegmatite veins. Four stages of zircon growth were recognized in the Weihai migmatitic gneisses. They successively recorded informations of protolith, prograde metamorphism, decompres- sional partial melting during early stage exhumation and subsequent fractional crystallization of pri- mary melt during later stage cooling exhumation. The inherited cores in zircon from the melanosome and the Pl-rich leucosome suggest that the pro- tolith of the migmatitic gneiss is Mid- Neoproterozoic (-780 Ma) magmatic rock. Metamorphic zircons with concordant ages ranging from 243 to 256 Ma occur as over- growth mantles on the protolith magmatic zir- con cores. The estimated growth temperatures (625-717 "C) of the metamorphic zircons have a negative correlation with their ages, indicating a progressive metamorphism in HP eciogite-facies condition during subduction. Zircon recrystal- lized rims (228-2 Ma) in the PI-rich ieucosome layers provide the lower limit of the decompress-sional partial melting time during exhumation. The ages from 228^-2 to 219~2 Ma recorded in the Pl-rich leucosome and the Kfs-rich pegmatite vein, respectively, suggest the duration of the fractional crystallization of primary melt during exhumation. The calculated growth temperatures of the zircon rims from the Pl-rich leucosome range from 858 to 739 , and the temperatures of new growth zircon grains (219±2 Ma) in Kfs-rich vein are between 769 and 529 . The estimated temperatures have a positive correlation with ages from the Pl-rich leucosome to
基金supported by the National Natural Science Foundation of China (Nos. 41372224 and 41590623)
文摘As a minor phase, kyanite has been repeatedly shown to have experienced ultrahigh pressure (UHP) metamorphism together with its host eclogites. Thus, it could play some role in trans- porting water into the deep earth. Here we present a detailed investigation of water concentrations of kyanite, and for reference, of garnet and omphacite from four Maobei eclogites in the Sulu orogenic belt, eastern China. Fourier transform infrared (FTIR) measurements show that kyanites, garnets, and omphacites all have distinct hydroxyl absorption bands due to OH groups bound in their crystal struc- ture. The FTIR profile analyses on ten grains from different samples reveal a homogeneous distribution of water across kyanite, suggesting insignificant water loss during exhumation. The calculated water concentrations in kyanite (21 wt ppm-41 wt ppm) are comparable to those reported previously for kyanite from various geological occurrences when using the most recent calibration. They are however much lower compared with those in garnet (46 wt ppm-83 wt ppm) and omphacite (302 wt ppm-548 wt ppm) from the Maobei eclogites. This implies that kyanite is not a major water carrier in eclogites con- sidering its low volume fraction and contributes negligibly to transport water into the deep mantle ac- companying subducted oceanic crust until its possible transformation to AISiO3OH.
基金financially supported by the Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology (No. MGQNLM201902)the National Natural Science Foundation of China (Nos. 41472155,41876037)+2 种基金the Scientific and Technological Innovation Project of the China Ocean Mineral Resources R & D Association (No. DY135-N2-1-04)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2016RCJJ008)the SDUST Research Fund (No. 2015TDJH101).
文摘The Sulu Orogen preserves the Neoproterozoic tectonic-magmatic events,corresponding to the breaking up of the Rodinia supercontinent.The ages and petrogenesis of meta-igneous rocks in the Liansandao area in the northern Sulu Orogen are not well-constrained.This study reports zircon U-Pb ages and Hf isotopes of these rocks from the Liansandao area.Three meta-igneous rock samples give similar weighted mean 206 Pb/238 U ages of 744±11,767±12,and 762±15 Ma,respectively,indicating the Neoproterozoic crystallization ages.These rocks formed coevally with the Wulian and Yangkou intrusions that located along the Yantai-Qingdao-Wulian fault zone.The Neoproterozoic ages indicate that the meta-igneous rocks from the Liansandao area have affinity to the Yangtze Block.The three samples haveεHf(t)values of-7.2–-10.5,-6.0–-17.5,and-6.8–-12.0,respectively.These negativeεHf(t)values indicate a primarily crustal source.However,the widely variousεHf(t)values that are higher than the continental crust,suggesting magma mixing between mantle-derived materials and the continental crust or source heterogeneity.Combined with the Hf model ages and geochemical characteristics,the monzodiorite(sample LSD-2)is most likely to be mantle-derived magma then interacted with ancient continental crust,and the granitic protolith(samples LSD-1 and LSD-3)in the Liansandao area might derive from the re-melting of a Paleoproterozoic continental crust at^750 Ma,resulting from the upwelling and underplating of mantle-derived magma formed in an extensional setting due to the break-up of the Rodinia supercontinent.