Morpho butterfly, famous for its iridescence wing scales, has gradually evolved a diversity of functions and has attracted much attention recently. On the other hand, it is known that the wing surface of Morpho butter...Morpho butterfly, famous for its iridescence wing scales, has gradually evolved a diversity of functions and has attracted much attention recently. On the other hand, it is known that the wing surface of Morpho butterfly has some complex and so- phisticated structures. In fact, they are composed of an alternating multilayer film system of chitin and air layers, which have different refractive indexes. More importantly, these structures can interact strongly with visible light because the feature size of the structures is in the same order of magnitude with light wavelength. It is noteworthy that it is these optical architectures that cause the excellent multifunction including structural color, antireflection, thermal response, selective vapour response, direc- tional adhesion, superhydrophobicity and so on. This review mainly covers the excellent multifunctional features of Morpho butterfly wings with representative functional structures of multilayer film system, photonic crystal and ridges. Then, the mechanism of the structure-based optical multifunction of Morpho butterfly is analyzed. In order to facilitate mechanism analysis, the models of bionic functional structures are reported, as well as the interaction process between the multiscale structures and the external media It is concluded that these functions of Morpho butterfly wings have inevitable and corre- sponding regularity connection with the structural parameters and the dielectric coefficient of the filled medium. At last, the future direction and prospects of this field are briefly addressed. It is hoped that this review could be beneficial to provide some innovative insoirations and new ideas to the researchers in the fields of engineering, biomedicine, and materials science.展开更多
Since nucleic acids(DNA and RNA) play very important roles in cells,they are molecular targets of many clinically used drugs,such as anticancer drugs and antibiotics.Because of clinical demands for treating various de...Since nucleic acids(DNA and RNA) play very important roles in cells,they are molecular targets of many clinically used drugs,such as anticancer drugs and antibiotics.Because of clinical demands for treating various deadly cancers and drug-resistant strains of pathogens,there are urgent needs to develop novel therapeutic agents.Targeting nucleic acids hasn’t been the mainstream of drug discovery in the past,and the lack of 3D structural information for designing and developing drug specificity is one of the main reasons.Fortunately,many important structures of nucleic acids and their protein complexes have been determined over the past decade,which provide novel platforms for future drug design and discovery.In this review,we describe some useful nucleic acid structures,particularly their interactions with the ligands and therapeutic candidates or even drugs.We summarize important information for designing novel potent drugs and for targeting nucleic acids and protein-nucleic acid complexes to treat cancers and overcome the drug-resistant problems.展开更多
Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid p...Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid precursor protein cleaving enzyme 1(BACE1),plays a crucial role in generating Aβpeptides.With no targeted therapy available for Alzheimer’s disease,inhibiting BACE1 aspartic protease has emerged as a primary treatment target.Since 1999,compounds demonstrating potential binding to the BACE1 receptor have advanced to human trials.Structural optimization of synthetically derived compounds,coupled with computational approaches,has offered valuable insights for developing highly selective leads with drug-like properties.This review highlights pivotal studies on the design and development of BACE1 inhibitors as anti-Alzheimer’s disease agents.It summarizes computational methods employed in facilitating drug discovery for potential BACE1 inhibitors and provides an update on their clinical status,indicating future directions for novel BACE1 inhibitors.The promising clinical results of Elenbecestat(E-2609)catalyze the development of effective,selective BACE1 inhibitors in the future.展开更多
Inhibition of mycobacterial membrane protein large 3(MmpL3)thereby affecting the mycolic acid biosynthetic pathway has been proven to be an effective strategy for developing antitubercular drugs.Based on the X-ray cry...Inhibition of mycobacterial membrane protein large 3(MmpL3)thereby affecting the mycolic acid biosynthetic pathway has been proven to be an effective strategy for developing antitubercular drugs.Based on the X-ray crystal structure of MmpL3 inhibitor complexes,a series of novel 1,2,4-triazole derivatives were designed,synthesized and evaluated antitubercular activity against Mtb strain H37Rv.Comprehensive structure–activity relationship exploration resulted in the identification of compounds 21 and 28,which possess potent antitubercular activity against Mtb strain H37Rv[minimum inhibitory concentration(MIC)=0.03–0.13μg/mL]and the clinical isolates of multidrug resistance(MDR)and extensive drug resistance(XDR)tuberculosis(MIC=0.06–1.0μg/mL).Moreover,compounds 21 and 28 showed neglectable cytotoxicity(IC_(50)≥32μg/mL)to the mammalian Vero cells and favorable physicochemical and pharmacokinetic properties according to the in silico absorption,distribution,metabolism and excretion(ADME)prediction.Finally,the potential target of representative 1,2,4-triazole 28 was identified to be MmpL3 using a microscale thermophoresis(MST)assay.展开更多
Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) has become one major threat to human population health.The RNA-dependent RNA polymerase(RdRp) presents an ideal target of antivirals,whereas nucleoside analo...Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) has become one major threat to human population health.The RNA-dependent RNA polymerase(RdRp) presents an ideal target of antivirals,whereas nucleoside analogs inhibitor is hindered by the proofreading activity of coronavirus.Herein,we report that corilagin(RAI-S-37) as a non-nucleoside inhibitor of SARS-CoV-2 RdRp,binds directly to RdRp,effectively inhibits the polymerase activity in both cell-free and cell-based assays,fully resists the proofreading activity and potently inhibits SARS-CoV-2 infection with a low 50% effective concentration(EC50) value of 0.13 μmol/L.Computation modeling predicts that RAI-S-37 lands at the palm domain of RdRp and prevents conformational changes required for nucleotide incorporation by RdRp.In addition,combination of RAI-S-37 with remdesivir exhibits additive activity against antiSARS-CoV-2 RdRp.Together with the current data available on the safety and pharmacokinetics of corilagin as a medicinal herbal agent,these results demonstrate the potential of being developed into one of the much-needed SARS-CoV-2 therapeutics.展开更多
The residence time distribution (RTD) of solids and the fluidized structure of a bubbling fluidized bed were investigated numerically using computational fluid dynamics simulations coupled with the modified structur...The residence time distribution (RTD) of solids and the fluidized structure of a bubbling fluidized bed were investigated numerically using computational fluid dynamics simulations coupled with the modified structure-based drag model. A general comparison of the simulated results with theoretical values shows reasonable agreement. As the mean residence time is increased, the RTD initial peak intensity decreases and the RTD curve tail extends farther. Numerous small peaks on the RTD curve are induced by the back- mixing and aggregation of particles, which attests to the non-uniform flow structure of the bubbling fluidized bed. The low value of t50 results in poor contact between phases, and the complete exit age of the overflow particles is much longer for back-mixed solids and those caught in dead regions. The formation of a gulf-stream flow and back-mixing for solids induces an even wider spread of RTD.展开更多
Our previous study demonstrated that phosphodiesterase 8(PDE8)could work as a potential target for vascular dementia(Va D)using a chemical probe 3a.However,compound 3a is a chiral compound which was obtained by chiral...Our previous study demonstrated that phosphodiesterase 8(PDE8)could work as a potential target for vascular dementia(Va D)using a chemical probe 3a.However,compound 3a is a chiral compound which was obtained by chiral resolution on HPLC,restricting its usage in clinic.Herein,a series of non-chiral 9-benzyl-2-chloro-adenine derivatives were discovered as novel PDE8 inhibitors.Lead 15 exhibited potent inhibitory activity against PDE8A(IC_(50)=11 nmol/L),high selectivity over other PDEs,and remarkable drug-like properties(worthy to mention is that its bioavailability was up to 100%).Oral administration of 15 significantly improved the c AMP level of the right brain and exhibited dosedependent effects on cognitive improvement in a Va D mouse model.Notably,the X-ray crystal structure of the PDE8A—15 complex showed that the potent affinity and high selectivity of 15 might come from the distinctive interactions with H-pocket including T-shapedπ—πinteractions with Phe785 as well as a unique H-bond network,which have never been observed in other PDE-inhibitor complex before,providing new strategies for the further rational design of novel selective inhibitors against PDE8.展开更多
Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time-and effort-consuming. Structural biology has been de...Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time-and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy(cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence(AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of mediumresolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.展开更多
Human immunodeficiency virus(HIV)is the primary infectious agent of acquired immunodeficiency syndrome(AIDS),and non-nucleoside reverse transcriptase inhibitors(NNRTIs)are the cornerstone of HIV treatment.In the last ...Human immunodeficiency virus(HIV)is the primary infectious agent of acquired immunodeficiency syndrome(AIDS),and non-nucleoside reverse transcriptase inhibitors(NNRTIs)are the cornerstone of HIV treatment.In the last 20 years,our medicinal chemistry group has made great strides in developing several distinct novel NNRTIs,including 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine(HEPT),thio-dihydro-alkoxy-benzyl-oxopyrimidine(S-DABO),diaryltriazine(DATA),diarylpyrimidine(DAPY)analogues,and their hybrid derivatives.Application of integrated modern medicinal strategies,including structure-based drug design,fragment-based optimization,scaffold/fragment hopping,molecular/fragment hybridization,and bioisosterism,led to the development of several highly potent analogues for further evaluations.In this paper,we review the development of NNRTIs in the last two decades using the above optimization strategies,including their structure-activity relationships,molecular modeling,and their binding modes with HIV-1 reverse transcriptase(RT).Future directions and perspectives on the design and associated challenges are also discussed.展开更多
Pancreatic cancer is one of the most aggressive cancers with poor prognosis and a low 5-year survival rate.The family of P21-activated kinases(PAKs)appears to modulate many signaling pathways that contribute to pancre...Pancreatic cancer is one of the most aggressive cancers with poor prognosis and a low 5-year survival rate.The family of P21-activated kinases(PAKs)appears to modulate many signaling pathways that contribute to pancreatic carcinogenesis.In this work,we demonstrated that PAK1 is a critical regulator in pancreatic cancer cell growth.PAK1-targeted inhibition is therefore a new potential therapeutic strategy for pancreatic cancer.Our small molecule screening identified a relatively specific PAK1-targeted inhibitor,CP734.Pharmacological and biochemical studies indicated that CP734 targets residue V342 of PAK1 to inhibit its ATPase activity.Further in vitro and in vivo studies elucidated that CP734 suppresses pancreatic tumor growth through depleting PAK1 kinase activity and its downstream signaling pathways.Little toxicity of CP734 was observed in murine models.Combined with gemcitabine or 5-fluorouracil,CP734 also showed synergistic effects on the anti-proliferation of pancreatic cancer cells.All these favorable results indicated that CP734 is a new potential therapeutic candidate for pancreatic cancer.展开更多
a novel and promising antitumor target,AXL plays an important role in tumor growth,metastasis,immunosuppression and drug resistance of various malignancies,which has attracted extensive research interest in recent yea...a novel and promising antitumor target,AXL plays an important role in tumor growth,metastasis,immunosuppression and drug resistance of various malignancies,which has attracted extensive research interest in recent years.In this study,by employing the structure-based drug design and bioisosterism strategies,we designed and synthesized in total 54 novel AXL inhibitors featuring a fusedpyrazolone carboxamide scaffold,of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions.Notably,compound 59 showed a desirable AXL kinase inhibitory activity(IC_(50):3.5 nmol/L)as well as good kinase selectivity,and it effectively blocked the cellular AXL signaling.In turn,compound 59 could potently inhibit BaF3/TEL-AXL cell viability(IC_(50):1.5 nmol/L)and significantly suppress GAS6/AXL-mediated cancer cell invasion,migration and wound healing at the nanomolar level.More importantly,compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency,in which we observed significant AXL phosphorylation suppression,and its antitumor efficacy at 20 mg/kg(qd)was comparable to that of BGB324 at 50 mg/kg(bid),the most advanced AXL inhibitor.Taken together,this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.展开更多
Ebola virus(EBOV)infection leads to staggeringly high mortality rate.Effective and low-cost treatments are urgently needed to control frequent EBOV outbreaks in Africa.In this study,we report that a natural compound c...Ebola virus(EBOV)infection leads to staggeringly high mortality rate.Effective and low-cost treatments are urgently needed to control frequent EBOV outbreaks in Africa.In this study,we report that a natural compound called berbamine hydrochloride strongly inhibits EBOV replication in vitro and in vivo.Our work further showed that berbamine hydrochloride acts by directly binding to the cleaved EBOV glycoprotein(GPcl),disrupting GPcl interaction with viral receptor Niemann-Pick C1,thus blocking the fusion of viral and cellular membranes.Our data support the probability of developing anti-EBOV small molecule drugs by targeting viral GPcl.More importantly,since berbamine hydrochloride has been used in clinic to treat leukopenia,it holds great promise of being quickly repurposed as an anti-EBOV drug.展开更多
Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein inter...Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein interaction networks. We also describe the commonly used experimental methods to construct these networks, and the insights that can be gained from these networks. We then discuss the recent transition from graph theory based networks to structure based protein-protein interaction networks and the advantages of the latter over the former, using two networks as examples. We further discuss the usefulness of structure based protein-protein interaction networks for drug discovery, with a special emphasis on drug repositioning.展开更多
We report in this study the identification of a natural product-like antagonist(1a) of Vps34 as a potent autophagy modulator via structure-based virtual screening. Aurone derivative 1a strongly inhibited Vps34 activit...We report in this study the identification of a natural product-like antagonist(1a) of Vps34 as a potent autophagy modulator via structure-based virtual screening. Aurone derivative 1a strongly inhibited Vps34 activity in cell-free and cell-based assays. Significantly, 1a prevents autophagy in human cells induced either by starvation or by an mT OR inhibitor. In silico modeling and kinetic data revealed that 1a could function as an ATP-competitive inhibitor of Vps34. Moreover, it suppressed autophagy in vivo and without inducing heart or liver damage in mice. 1a could be utilized as a new motif for more selective and efficacious antagonists of Vps34 for the potential treatment of autophagy-related human diseases.展开更多
The trend toward designing large hydrophobic molecules for lead optimization is often associated with poor drug-likeness and high attrition rates in drug discovery and development. Structural simplification is a power...The trend toward designing large hydrophobic molecules for lead optimization is often associated with poor drug-likeness and high attrition rates in drug discovery and development. Structural simplification is a powerful strategy for improving the efficiency and success rate of drug design by avoiding 'molecular obesity'. The structural simplification of large or complex lead compounds by truncating unnecessary groups can not only improve their synthetic accessibility but also improve their pharmacokinetic profiles, reduce side effects and so on. This review will summarize the application of structural simplification in lead optimization. Numerous case studies, particularly those involving successful examples leading to marketed drugs or drug-like candidates, will be introduced and analyzed to illustrate the design strategies and guidelines for structural simplification.展开更多
Transcription Factors(TFs) are a very diverse family of DNA-binding proteins that play essential roles in the regulation of gene expression through binding to specific DNA sequences. They are considered as one of th...Transcription Factors(TFs) are a very diverse family of DNA-binding proteins that play essential roles in the regulation of gene expression through binding to specific DNA sequences. They are considered as one of the prime drug targets since mutations and aberrant TF-DNA interactions are implicated in many diseases.Identification of TF-binding sites on a genomic scale represents a critical step in delineating transcription regulatory networks and remains a major goal in genomic annotations. Recent development of experimental high-throughput technologies has provided valuable information about TF-binding sites at genome scale under various physiological and developmental conditions. Computational approaches can provide a cost-effective alternative and complement the experimental methods by using the vast quantities of available sequence or structural information. In this review we focus on structure-based prediction of transcription factor binding sites. In addition to its potential in genomescale predictions, structure-based approaches can help us better understand the TF-DNA interaction mechanisms and the evolution of transcription factors and their target binding sites. The success of structure-based methods also bears a translational impact on targeted drug design in medicine and biotechnology.展开更多
Pharmacophore is a commonly used method for molecular simulation, including ligand-based pharmacophore (LBP) and structure-based pharmacophore (SBP). LBP can be utilized to identify active compounds usual with low...Pharmacophore is a commonly used method for molecular simulation, including ligand-based pharmacophore (LBP) and structure-based pharmacophore (SBP). LBP can be utilized to identify active compounds usual with lower accuracy, and SBP is able to use for distin- guishing active compounds from inactive compounds with frequently higher missing rates. Merged pharmacophore (MP) is presented to integrate advantages and avoid shortcomings of LBP and SBP. In this work, LBP and SBP models were constructed for the study of per- oxisome proliferator receptor-alpha (PPARα) agonists. According to the comparison of the two types of pharmacophore models, mainly and secondarily pharmacological features were identified. The weight and tolerance values of these pharmacological features were adjusted to construct MP models by single-factor explorations and orthogonal experimental design based on SBP model. Then, the reliability and screening efficiency of the best MP model were validated by three databases. The best MP model was utilized to compute PPARα activity of compounds from traditional Chinese medicine. The screening efficiency of MP model outperformed individual LBP or SBP model for PPARα agonists, and was similar to combinatorial screening of LBP and SBP. However, MP model might have an advantage over the combination of LBP and SBP in evaluating the activity of compounds and avoiding the inconsistent prediction of LBP and SBP, which would be beneficial to guide drug design and optimization.展开更多
Genomic alterations are commonly found in the signaling pathways of fibroblast growth factor receptors(FGFRs). Although there is no selective FGFR inhibitors in market, several promising inhibitors have been investiga...Genomic alterations are commonly found in the signaling pathways of fibroblast growth factor receptors(FGFRs). Although there is no selective FGFR inhibitors in market, several promising inhibitors have been investigated in clinical trials, and showed encouraging efficacies in patients. By designing a hybrid between the FGFR-selectivity-enhancing motif dimethoxybenzene group and our previously identified novel scaffold, we discovered a new series of potent FGFR inhibitors, with the best one showing sub-nanomolar enzymatic activity. After several round of optimization and with the solved crystal structure, detailed structure–activity relationship was elaborated. Together with in vitro metabolic stability tests and in vivo pharmacokinetic profiling, a representative compound(35) was selected and tested in xenograft mouse model, and the result demonstrated that inhibitor 35 was effective against tumors with FGFR genetic alterations, exhibiting potential for further development.展开更多
In recent years, there are many types of semantic similarity measures, which are used to measure the similarity between two concepts. It is necessary to define the differences between the measures, performance, and ev...In recent years, there are many types of semantic similarity measures, which are used to measure the similarity between two concepts. It is necessary to define the differences between the measures, performance, and evaluations. The major contribution of this paper is to choose the best measure among different similarity measures that give us good result with less error rate. The experiment was done on a taxonomy built to measure the semantic distance between two concepts in the health domain, which are represented as nodes in the taxonomy. Similarity measures methods were evaluated relative to human experts’ ratings. Our experiment was applied on the ICD10 taxonomy to determine the similarity value between two concepts. The similarity between 30 pairs of the health domains has been evaluated using different types of semantic similarity measures equations. The experimental results discussed in this paper have shown that the Hoa A. Nguyen and Hisham Al-Mubaid measure has achieved high matching score by the expert’s judgment.展开更多
Mycobacterium tuberculosis FabH, an essential enzyme in mycolic acids biosynthetic pathway, is an attractive target for novel anti-tuberculosis agents. Structure-based design, synthesis of novel inhibitors of mtFabH w...Mycobacterium tuberculosis FabH, an essential enzyme in mycolic acids biosynthetic pathway, is an attractive target for novel anti-tuberculosis agents. Structure-based design, synthesis of novel inhibitors of mtFabH was reported in this paper. A novel scaffold structure was designed, and 12 candidate compounds that displayed favorable binding with the active site were identified and synthesized. 2009 Song Li. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
基金This work is supported by the National Natural Science Foundation of China (Nos. 51325501, 51175220, 51205161 and 51290292), Science and Technology Development Project of Jilin Province (No. 20111808), and the Graduate Innovation Fund of Jilin University (No. 20121085).
文摘Morpho butterfly, famous for its iridescence wing scales, has gradually evolved a diversity of functions and has attracted much attention recently. On the other hand, it is known that the wing surface of Morpho butterfly has some complex and so- phisticated structures. In fact, they are composed of an alternating multilayer film system of chitin and air layers, which have different refractive indexes. More importantly, these structures can interact strongly with visible light because the feature size of the structures is in the same order of magnitude with light wavelength. It is noteworthy that it is these optical architectures that cause the excellent multifunction including structural color, antireflection, thermal response, selective vapour response, direc- tional adhesion, superhydrophobicity and so on. This review mainly covers the excellent multifunctional features of Morpho butterfly wings with representative functional structures of multilayer film system, photonic crystal and ridges. Then, the mechanism of the structure-based optical multifunction of Morpho butterfly is analyzed. In order to facilitate mechanism analysis, the models of bionic functional structures are reported, as well as the interaction process between the multiscale structures and the external media It is concluded that these functions of Morpho butterfly wings have inevitable and corre- sponding regularity connection with the structural parameters and the dielectric coefficient of the filled medium. At last, the future direction and prospects of this field are briefly addressed. It is hoped that this review could be beneficial to provide some innovative insoirations and new ideas to the researchers in the fields of engineering, biomedicine, and materials science.
基金financially supported by the Georgia Cancer Coalition(GCC) Distinguished Cancer Clinicians and Scientists and by the US National Science Foundation(NSF MCB-0824837)
文摘Since nucleic acids(DNA and RNA) play very important roles in cells,they are molecular targets of many clinically used drugs,such as anticancer drugs and antibiotics.Because of clinical demands for treating various deadly cancers and drug-resistant strains of pathogens,there are urgent needs to develop novel therapeutic agents.Targeting nucleic acids hasn’t been the mainstream of drug discovery in the past,and the lack of 3D structural information for designing and developing drug specificity is one of the main reasons.Fortunately,many important structures of nucleic acids and their protein complexes have been determined over the past decade,which provide novel platforms for future drug design and discovery.In this review,we describe some useful nucleic acid structures,particularly their interactions with the ligands and therapeutic candidates or even drugs.We summarize important information for designing novel potent drugs and for targeting nucleic acids and protein-nucleic acid complexes to treat cancers and overcome the drug-resistant problems.
文摘Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid precursor protein cleaving enzyme 1(BACE1),plays a crucial role in generating Aβpeptides.With no targeted therapy available for Alzheimer’s disease,inhibiting BACE1 aspartic protease has emerged as a primary treatment target.Since 1999,compounds demonstrating potential binding to the BACE1 receptor have advanced to human trials.Structural optimization of synthetically derived compounds,coupled with computational approaches,has offered valuable insights for developing highly selective leads with drug-like properties.This review highlights pivotal studies on the design and development of BACE1 inhibitors as anti-Alzheimer’s disease agents.It summarizes computational methods employed in facilitating drug discovery for potential BACE1 inhibitors and provides an update on their clinical status,indicating future directions for novel BACE1 inhibitors.The promising clinical results of Elenbecestat(E-2609)catalyze the development of effective,selective BACE1 inhibitors in the future.
基金supported by the National Natural Science Foundation of China(Nos.82073706 and 22107031)funded in part with Federal funds from the National Institutes of Health and National Institute of Allergy and Infectious Diseases,Department of Health and Human Services(No.AI155602)。
文摘Inhibition of mycobacterial membrane protein large 3(MmpL3)thereby affecting the mycolic acid biosynthetic pathway has been proven to be an effective strategy for developing antitubercular drugs.Based on the X-ray crystal structure of MmpL3 inhibitor complexes,a series of novel 1,2,4-triazole derivatives were designed,synthesized and evaluated antitubercular activity against Mtb strain H37Rv.Comprehensive structure–activity relationship exploration resulted in the identification of compounds 21 and 28,which possess potent antitubercular activity against Mtb strain H37Rv[minimum inhibitory concentration(MIC)=0.03–0.13μg/mL]and the clinical isolates of multidrug resistance(MDR)and extensive drug resistance(XDR)tuberculosis(MIC=0.06–1.0μg/mL).Moreover,compounds 21 and 28 showed neglectable cytotoxicity(IC_(50)≥32μg/mL)to the mammalian Vero cells and favorable physicochemical and pharmacokinetic properties according to the in silico absorption,distribution,metabolism and excretion(ADME)prediction.Finally,the potential target of representative 1,2,4-triazole 28 was identified to be MmpL3 using a microscale thermophoresis(MST)assay.
基金supported by the National MegaProject for Infectious Disease (2018ZX10301408, China)the National Mega-Project for Significant New Drug Discovery (2018ZX09711003-002-002, China)+3 种基金the National Natural Science Foundation of China (81802019 and 81902075)the Beijing Natural Science Foundation (7184228, China)CAMS Innovation Fund for Medical Sciences (2018-I2M-3-004 and 2020-I2M-2010, China)the Peking Union Medical College Youth Fund (3332016063 and 3332018096, China)。
文摘Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) has become one major threat to human population health.The RNA-dependent RNA polymerase(RdRp) presents an ideal target of antivirals,whereas nucleoside analogs inhibitor is hindered by the proofreading activity of coronavirus.Herein,we report that corilagin(RAI-S-37) as a non-nucleoside inhibitor of SARS-CoV-2 RdRp,binds directly to RdRp,effectively inhibits the polymerase activity in both cell-free and cell-based assays,fully resists the proofreading activity and potently inhibits SARS-CoV-2 infection with a low 50% effective concentration(EC50) value of 0.13 μmol/L.Computation modeling predicts that RAI-S-37 lands at the palm domain of RdRp and prevents conformational changes required for nucleotide incorporation by RdRp.In addition,combination of RAI-S-37 with remdesivir exhibits additive activity against antiSARS-CoV-2 RdRp.Together with the current data available on the safety and pharmacokinetics of corilagin as a medicinal herbal agent,these results demonstrate the potential of being developed into one of the much-needed SARS-CoV-2 therapeutics.
文摘The residence time distribution (RTD) of solids and the fluidized structure of a bubbling fluidized bed were investigated numerically using computational fluid dynamics simulations coupled with the modified structure-based drag model. A general comparison of the simulated results with theoretical values shows reasonable agreement. As the mean residence time is increased, the RTD initial peak intensity decreases and the RTD curve tail extends farther. Numerous small peaks on the RTD curve are induced by the back- mixing and aggregation of particles, which attests to the non-uniform flow structure of the bubbling fluidized bed. The low value of t50 results in poor contact between phases, and the complete exit age of the overflow particles is much longer for back-mixed solids and those caught in dead regions. The formation of a gulf-stream flow and back-mixing for solids induces an even wider spread of RTD.
基金supported by the Natural Science Foundation of China(21877134,22077143,81903542,and 21977127)Science Foundation of Guangzhou City(201904020023,China)+3 种基金Fundamental Research Funds for Hainan University(KYQD(ZR)21031,China)Science Foundation of Guangdong Province(2019A1515011883,China)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01Y093,China)Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme(2016,China)。
文摘Our previous study demonstrated that phosphodiesterase 8(PDE8)could work as a potential target for vascular dementia(Va D)using a chemical probe 3a.However,compound 3a is a chiral compound which was obtained by chiral resolution on HPLC,restricting its usage in clinic.Herein,a series of non-chiral 9-benzyl-2-chloro-adenine derivatives were discovered as novel PDE8 inhibitors.Lead 15 exhibited potent inhibitory activity against PDE8A(IC_(50)=11 nmol/L),high selectivity over other PDEs,and remarkable drug-like properties(worthy to mention is that its bioavailability was up to 100%).Oral administration of 15 significantly improved the c AMP level of the right brain and exhibited dosedependent effects on cognitive improvement in a Va D mouse model.Notably,the X-ray crystal structure of the PDE8A—15 complex showed that the potent affinity and high selectivity of 15 might come from the distinctive interactions with H-pocket including T-shapedπ—πinteractions with Phe785 as well as a unique H-bond network,which have never been observed in other PDE-inhibitor complex before,providing new strategies for the further rational design of novel selective inhibitors against PDE8.
基金funded by the National Natural Science Foundation of China (NSFC, 31900046, 81972085, 82172465 and 32161133022)the Guangdong Provincial Key Laboratory of Advanced Biomaterials (2022B1212010003)+7 种基金the National Science and Technology Innovation 2030 Major Program (2022ZD0211900)the Shenzhen Key Laboratory of Computer Aided Drug Discovery (ZDSYS20201230165400001)the Chinese Academy of Science President’s International Fellowship Initiative (PIFI)(2020FSB0003)the Guangdong Retired Expert (granted by Guangdong Province)the Shenzhen Pengcheng ScientistNSFC-SNSF Funding (32161133022)Alpha Mol&SIAT Joint LaboratoryShenzhen Government Top-talent Working Funding and Guangdong Province Academician Work Funding。
文摘Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time-and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy(cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence(AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of mediumresolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.
基金funded by grants from the National Natural Science Foundation of China(81872791 and 21372050)the Young Elite Scientists Sponsorship Program by the China Association forScience and Technology(2017QNRC061)+1 种基金National Key R&D Program of China(2017YFA0506000)the Key Research and Development Program of Ningxia(2019BFG02017 and 2018BFH02001,China)
文摘Human immunodeficiency virus(HIV)is the primary infectious agent of acquired immunodeficiency syndrome(AIDS),and non-nucleoside reverse transcriptase inhibitors(NNRTIs)are the cornerstone of HIV treatment.In the last 20 years,our medicinal chemistry group has made great strides in developing several distinct novel NNRTIs,including 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine(HEPT),thio-dihydro-alkoxy-benzyl-oxopyrimidine(S-DABO),diaryltriazine(DATA),diarylpyrimidine(DAPY)analogues,and their hybrid derivatives.Application of integrated modern medicinal strategies,including structure-based drug design,fragment-based optimization,scaffold/fragment hopping,molecular/fragment hybridization,and bioisosterism,led to the development of several highly potent analogues for further evaluations.In this paper,we review the development of NNRTIs in the last two decades using the above optimization strategies,including their structure-activity relationships,molecular modeling,and their binding modes with HIV-1 reverse transcriptase(RT).Future directions and perspectives on the design and associated challenges are also discussed.
基金supported by the National Natural Science Foundation of China(81873057,81973527)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Integration of Chinese and Western Medicine)grant(China).
文摘Pancreatic cancer is one of the most aggressive cancers with poor prognosis and a low 5-year survival rate.The family of P21-activated kinases(PAKs)appears to modulate many signaling pathways that contribute to pancreatic carcinogenesis.In this work,we demonstrated that PAK1 is a critical regulator in pancreatic cancer cell growth.PAK1-targeted inhibition is therefore a new potential therapeutic strategy for pancreatic cancer.Our small molecule screening identified a relatively specific PAK1-targeted inhibitor,CP734.Pharmacological and biochemical studies indicated that CP734 targets residue V342 of PAK1 to inhibit its ATPase activity.Further in vitro and in vivo studies elucidated that CP734 suppresses pancreatic tumor growth through depleting PAK1 kinase activity and its downstream signaling pathways.Little toxicity of CP734 was observed in murine models.Combined with gemcitabine or 5-fluorouracil,CP734 also showed synergistic effects on the anti-proliferation of pancreatic cancer cells.All these favorable results indicated that CP734 is a new potential therapeutic candidate for pancreatic cancer.
基金supported by the Natural Science Foundation of China for Innovation Research Group(81821005)the National Natural Science Foundation of China(21977106 and 82173834)+4 种基金the Collaborative Innovation Cluster Project of Shanghai Municipal Commission of Health and Family Planning(2020CXJQ02)the Shanghai Post-doctoral Excellence Program(2022231,China)the Shanghai Sail Program(22YF1460700,China)Lingang Laboratory(LG202103-02-07,China)Lingang Laboratory(LGGG-202204-02,China).
文摘a novel and promising antitumor target,AXL plays an important role in tumor growth,metastasis,immunosuppression and drug resistance of various malignancies,which has attracted extensive research interest in recent years.In this study,by employing the structure-based drug design and bioisosterism strategies,we designed and synthesized in total 54 novel AXL inhibitors featuring a fusedpyrazolone carboxamide scaffold,of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions.Notably,compound 59 showed a desirable AXL kinase inhibitory activity(IC_(50):3.5 nmol/L)as well as good kinase selectivity,and it effectively blocked the cellular AXL signaling.In turn,compound 59 could potently inhibit BaF3/TEL-AXL cell viability(IC_(50):1.5 nmol/L)and significantly suppress GAS6/AXL-mediated cancer cell invasion,migration and wound healing at the nanomolar level.More importantly,compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency,in which we observed significant AXL phosphorylation suppression,and its antitumor efficacy at 20 mg/kg(qd)was comparable to that of BGB324 at 50 mg/kg(bid),the most advanced AXL inhibitor.Taken together,this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.
基金This research was funded by the CAMS Innovation Fund for Medical Sciences(Grant Nos.2021-I2M-1-030 and CAMS-I2M-1-012,China)the National Natural Science Foundation of China(Grant Nos.81802019,81902075 and 81673358)+5 种基金the National Mega-project for Innovative Drugs(Grant No.2018ZX09711003-002-002,China)the Beijing Natural Science Foundation(Grant No.7184228,China)the Peking Union Medical College Youth Fund(Grant Nos.3332016063 and 3332018096,China)the China Ministry of Science and Technology National 973 Project(Grant No.2014CB542503)the Excellent Young Scientist Program from the NSFC(Grant No.81622031,China)the National Key Research and Development program of China(Grant No.2016YFD0500307).
文摘Ebola virus(EBOV)infection leads to staggeringly high mortality rate.Effective and low-cost treatments are urgently needed to control frequent EBOV outbreaks in Africa.In this study,we report that a natural compound called berbamine hydrochloride strongly inhibits EBOV replication in vitro and in vivo.Our work further showed that berbamine hydrochloride acts by directly binding to the cleaved EBOV glycoprotein(GPcl),disrupting GPcl interaction with viral receptor Niemann-Pick C1,thus blocking the fusion of viral and cellular membranes.Our data support the probability of developing anti-EBOV small molecule drugs by targeting viral GPcl.More importantly,since berbamine hydrochloride has been used in clinic to treat leukopenia,it holds great promise of being quickly repurposed as an anti-EBOV drug.
基金This work was funded by grants from the National Natural Science Foundation of China (NSFC) (Grant No. 31210103916 and 91019019), Chinese Ministry of Science and Technology (Grant No. 2011CB504206) and Chinese Academy of Sciences (CAS) (Grant Nos. KSCX2-EW-R-02 and KSCX2-EW-J-15) and stem cell leading project XDA01010303 to J.D.J.H.H.N. was supported by the Chinese Academy of Sciences Fellow- ship for Young International Scientist [Grant No. 2012Y1SB0006] and the National Natural Science Foundation of China [Grant No. 31250110524]. The authors thank Dr. Jerome Boyd-Kirkup for extensive editing and Hamna Anwar for proofreading the manu- script.
文摘Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein interaction networks. We also describe the commonly used experimental methods to construct these networks, and the insights that can be gained from these networks. We then discuss the recent transition from graph theory based networks to structure based protein-protein interaction networks and the advantages of the latter over the former, using two networks as examples. We further discuss the usefulness of structure based protein-protein interaction networks for drug discovery, with a special emphasis on drug repositioning.
基金supported by Hong Kong Baptist University (FRG2/ 16–17/007, FRG2/17–18/003, China)the Health and Medical Research Fund (HMRF/14150561, China)+9 种基金the Research Grants Council (HKBU/12301115, China)the National Natural Science Foundation of China (21575121 and 21775131, China)the Hong Kong Baptist University Century Club Sponsorship Scheme 2018 (China)the Interdisciplinary Research Matching Scheme (RC-IRMS/16–17/03, China)Interdisciplinary Research Clusters Matching Scheme (RC-IRCs/17–18/03, China)Innovation and Technology Fund (ITS/260/16FX, China), Matching Proof of Concept Fund (MPCF-001–2017/18, China)Collaborative Research Fund (C5026-16G, China), SKLEBA and HKBU Strategic Development Fund (SKLP_1718_P04, China)the Science and Technology Development Fund, Macao SAR (0072/ 2018/A2, China)the University of Macao (MYRG2016-00151ICMS-QRCM and MYRG2018-00187-ICMS, China)a Discovery Project Grant (DP160101682, Australia) from the Australian Research Council
文摘We report in this study the identification of a natural product-like antagonist(1a) of Vps34 as a potent autophagy modulator via structure-based virtual screening. Aurone derivative 1a strongly inhibited Vps34 activity in cell-free and cell-based assays. Significantly, 1a prevents autophagy in human cells induced either by starvation or by an mT OR inhibitor. In silico modeling and kinetic data revealed that 1a could function as an ATP-competitive inhibitor of Vps34. Moreover, it suppressed autophagy in vivo and without inducing heart or liver damage in mice. 1a could be utilized as a new motif for more selective and efficacious antagonists of Vps34 for the potential treatment of autophagy-related human diseases.
基金supported by the National Natural Science Foundation of China (Grant No. 81725020 to Chunquan Sheng and No. 21602252 to Shengzheng Wang)the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2019-0107-00-07-E00073 to Chunquan Sheng, China)the Hong Kong Scholars Program (Grant No. XJ201713 to Shengzheng Wang, China)
文摘The trend toward designing large hydrophobic molecules for lead optimization is often associated with poor drug-likeness and high attrition rates in drug discovery and development. Structural simplification is a powerful strategy for improving the efficiency and success rate of drug design by avoiding 'molecular obesity'. The structural simplification of large or complex lead compounds by truncating unnecessary groups can not only improve their synthetic accessibility but also improve their pharmacokinetic profiles, reduce side effects and so on. This review will summarize the application of structural simplification in lead optimization. Numerous case studies, particularly those involving successful examples leading to marketed drugs or drug-like candidates, will be introduced and analyzed to illustrate the design strategies and guidelines for structural simplification.
基金supported by the National Science Foundation #DBI-0844749 and #DBI-1356459 to JTG
文摘Transcription Factors(TFs) are a very diverse family of DNA-binding proteins that play essential roles in the regulation of gene expression through binding to specific DNA sequences. They are considered as one of the prime drug targets since mutations and aberrant TF-DNA interactions are implicated in many diseases.Identification of TF-binding sites on a genomic scale represents a critical step in delineating transcription regulatory networks and remains a major goal in genomic annotations. Recent development of experimental high-throughput technologies has provided valuable information about TF-binding sites at genome scale under various physiological and developmental conditions. Computational approaches can provide a cost-effective alternative and complement the experimental methods by using the vast quantities of available sequence or structural information. In this review we focus on structure-based prediction of transcription factor binding sites. In addition to its potential in genomescale predictions, structure-based approaches can help us better understand the TF-DNA interaction mechanisms and the evolution of transcription factors and their target binding sites. The success of structure-based methods also bears a translational impact on targeted drug design in medicine and biotechnology.
文摘Pharmacophore is a commonly used method for molecular simulation, including ligand-based pharmacophore (LBP) and structure-based pharmacophore (SBP). LBP can be utilized to identify active compounds usual with lower accuracy, and SBP is able to use for distin- guishing active compounds from inactive compounds with frequently higher missing rates. Merged pharmacophore (MP) is presented to integrate advantages and avoid shortcomings of LBP and SBP. In this work, LBP and SBP models were constructed for the study of per- oxisome proliferator receptor-alpha (PPARα) agonists. According to the comparison of the two types of pharmacophore models, mainly and secondarily pharmacological features were identified. The weight and tolerance values of these pharmacological features were adjusted to construct MP models by single-factor explorations and orthogonal experimental design based on SBP model. Then, the reliability and screening efficiency of the best MP model were validated by three databases. The best MP model was utilized to compute PPARα activity of compounds from traditional Chinese medicine. The screening efficiency of MP model outperformed individual LBP or SBP model for PPARα agonists, and was similar to combinatorial screening of LBP and SBP. However, MP model might have an advantage over the combination of LBP and SBP in evaluating the activity of compounds and avoiding the inconsistent prediction of LBP and SBP, which would be beneficial to guide drug design and optimization.
基金financial support from the National Natural Science Foundation of China(Grants No.81661148046 and81773762,China)the "Personalized Medicines-Molecular Signature-based Drug Discovery and Development",Strategic Priority Research Program of the Chinese Academy of Sciences(Grants No.XDA12020317,China)+1 种基金the program for Innovative Research Team of the Ministry of Education(China)the program for Liaoning Innovative Research Team at Shenyang Pharmaceutical University(China)
文摘Genomic alterations are commonly found in the signaling pathways of fibroblast growth factor receptors(FGFRs). Although there is no selective FGFR inhibitors in market, several promising inhibitors have been investigated in clinical trials, and showed encouraging efficacies in patients. By designing a hybrid between the FGFR-selectivity-enhancing motif dimethoxybenzene group and our previously identified novel scaffold, we discovered a new series of potent FGFR inhibitors, with the best one showing sub-nanomolar enzymatic activity. After several round of optimization and with the solved crystal structure, detailed structure–activity relationship was elaborated. Together with in vitro metabolic stability tests and in vivo pharmacokinetic profiling, a representative compound(35) was selected and tested in xenograft mouse model, and the result demonstrated that inhibitor 35 was effective against tumors with FGFR genetic alterations, exhibiting potential for further development.
文摘In recent years, there are many types of semantic similarity measures, which are used to measure the similarity between two concepts. It is necessary to define the differences between the measures, performance, and evaluations. The major contribution of this paper is to choose the best measure among different similarity measures that give us good result with less error rate. The experiment was done on a taxonomy built to measure the semantic distance between two concepts in the health domain, which are represented as nodes in the taxonomy. Similarity measures methods were evaluated relative to human experts’ ratings. Our experiment was applied on the ICD10 taxonomy to determine the similarity value between two concepts. The similarity between 30 pairs of the health domains has been evaluated using different types of semantic similarity measures equations. The experimental results discussed in this paper have shown that the Hoa A. Nguyen and Hisham Al-Mubaid measure has achieved high matching score by the expert’s judgment.
基金supported by the National Basic Research Program of China(No.2004CB518908)the National High Technology Research and Development Program of China(No.2006AA020601)
文摘Mycobacterium tuberculosis FabH, an essential enzyme in mycolic acids biosynthetic pathway, is an attractive target for novel anti-tuberculosis agents. Structure-based design, synthesis of novel inhibitors of mtFabH was reported in this paper. A novel scaffold structure was designed, and 12 candidate compounds that displayed favorable binding with the active site were identified and synthesized. 2009 Song Li. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.