期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
基于PSO-BP神经网络的短期负荷预测算法 被引量:11
1
作者 张少迪 《现代电子技术》 2013年第12期155-158,162,共5页
提出一种短期负荷预测算法,用于解决对未来能耗周期能源使用的预测问题。首先介绍短期负荷特点,分析短期负荷运行规律,并采用零相滤波器对原始负荷曲线进行预处理,相除奇异点。其次,介绍BP神经网络基本结构,并针对BP神经网络容易陷入局... 提出一种短期负荷预测算法,用于解决对未来能耗周期能源使用的预测问题。首先介绍短期负荷特点,分析短期负荷运行规律,并采用零相滤波器对原始负荷曲线进行预处理,相除奇异点。其次,介绍BP神经网络基本结构,并针对BP神经网络容易陷入局部极小值的缺点,采用PSO算法确定网络训练初始权值。然后,设计一种基于PSO-BP神经网络的短期负荷预测算法,包括预滤波、训练样本集建立、神经网络输入/输出模式设计、神经网络结构确定等。最后,选择上海市武宁科技园区的电科商务大厦进行负荷预测,实验结果表明,与传统的BP神经网络相比,PSO-BP神经网络用于短期负荷预测算法的精度更高,预测负荷和实际负荷之间的平均绝对误差(MAE)小于1%。 展开更多
关键词 短期负荷预测 BP神经网络 粒子群算法 零相滤波器
下载PDF
基于扩展粗糙集的短期电力负荷预测模型 被引量:9
2
作者 刘学琴 吴耀华 崔宝华 《电力系统保护与控制》 EI CSCD 北大核心 2010年第5期25-28,38,共5页
影响短期电力负荷预测的因素众多,如何有效地判断和选择这些相关因素是改善电力负荷预测的关键,通过引入数据挖掘中粗糙集约简算法来解决这一难题。针对常规粗糙集算法计算量大,且不具备容错性和泛化能力,在属性约简过程中设置了分类可... 影响短期电力负荷预测的因素众多,如何有效地判断和选择这些相关因素是改善电力负荷预测的关键,通过引入数据挖掘中粗糙集约简算法来解决这一难题。针对常规粗糙集算法计算量大,且不具备容错性和泛化能力,在属性约简过程中设置了分类可信度β,因而对数据具有了一定的容错性和泛化能力,增强了抗噪声能力。经过对实际数据的计算分析,证实了本文提出的方法在一定程度上提高了负荷预测的精度和速度。 展开更多
关键词 短期电力负荷预测 粗糙集 属性约简
下载PDF
粒子群优化BP算法在电力系统短期负荷预测中的应用 被引量:4
3
作者 傅忠云 《重庆工学院学报》 2007年第19期93-96,共4页
为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结... 为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求. 展开更多
关键词 粒子群算法 BP模型 粒子群优化BP模型 短期负荷预测
下载PDF
基于人工神经网络的短期负荷预测的研究 被引量:6
4
作者 王小波 刘德强 《电力学报》 2011年第4期287-289,293,共4页
针对电力系统短期负荷预测的特点,以及人工神经网络的自学习和复杂的非线性拟合能力,将人工神经网络的BP、Elman、RBF三种模型用于短期负荷预测,建立了短期电力负荷预测模型,综合考虑气象、天气等影响负荷因素进行短期负荷预测。某电网... 针对电力系统短期负荷预测的特点,以及人工神经网络的自学习和复杂的非线性拟合能力,将人工神经网络的BP、Elman、RBF三种模型用于短期负荷预测,建立了短期电力负荷预测模型,综合考虑气象、天气等影响负荷因素进行短期负荷预测。某电网实际预测结果表明,RBF比BP、Elman有更好的预测精度,更快的速度。 展开更多
关键词 电力系统 短期负荷预测 人工神经网络 BP ELMAN RBF
下载PDF
基于大客户和地方电厂数据管理预测平台的负荷还原预测方法研究 被引量:5
5
作者 王栋 邵常宁 +2 位作者 费建平 冯刚 方志辉 《浙江电力》 2015年第12期11-15,30,共6页
短期负荷预测对于保证电力系统的可靠和经济运行具有重要意义,随着电网结构的复杂化和精益化管理要求的提高,需求侧和供应侧的管理对负荷预测越来越重要。为此,提出了一种需求侧、供应侧管理与预测技术相结合的办法,通过构建大客户与地... 短期负荷预测对于保证电力系统的可靠和经济运行具有重要意义,随着电网结构的复杂化和精益化管理要求的提高,需求侧和供应侧的管理对负荷预测越来越重要。为此,提出了一种需求侧、供应侧管理与预测技术相结合的办法,通过构建大客户与地方电厂的数据管理平台获得可靠的大客户用电计划,并对全网负荷中剥离出的纯负荷进行外推预测,再将分类预测的结果合并,从而达到提高预测效果的目的。最后以浙江舟山电网为算例验证了所提思路的可行性。 展开更多
关键词 短期负荷预测 数据管理平台 纯负荷 负荷还原预测
下载PDF
基于小波回归分析法的短期负荷预测模型研究 被引量:4
6
作者 闫冬梅 任丽莉 康冰 《长春师范学院学报(自然科学版)》 2010年第2期20-24,共5页
电力负荷预测在能源领域中是一项非常重要的研究课题,它对于保障系统的安全运行,并在此前提下实现能源的节约和生产的效益最大化具有非常重要的应用价值.本文以大孤山选矿厂的电能消耗为研究对象,首先利用小波变换对负荷序列进行分解,... 电力负荷预测在能源领域中是一项非常重要的研究课题,它对于保障系统的安全运行,并在此前提下实现能源的节约和生产的效益最大化具有非常重要的应用价值.本文以大孤山选矿厂的电能消耗为研究对象,首先利用小波变换对负荷序列进行分解,得到不同频率的各个负荷分量,然后利用数据分类和多元回归分析方法分别对各个分量进行预测,最后再将各个分量的预测值组合起来,得到最终的预测结果。 展开更多
关键词 短期负荷预测 小波变换 回归分析
下载PDF
基于自适应加权最小二乘支持向量机的短期负荷预测方法 被引量:4
7
作者 杨春玲 李天云 王爱凤 《吉林电力》 2007年第3期18-20,42,共4页
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差... 提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差异,赋予每个样本惩罚参数不同的加权系数,建立了具有良好推广性能的AWLS-SVM回归模型。本方法突出了不同样本在训练过程中贡献不同的特性,具有结构简单,泛化性能好,不易发生过拟合现象等优点。通过对真实数据的建模预测,证明了该法在短期负荷预测中的可行性和有效性。 展开更多
关键词 短期负荷预测 自适应参数优化法 最小二乘支持向量机
下载PDF
Short Term Load Forecast Using Wavelet Neural Network
8
作者 Gui Min, Rong Fei and Luo An College of Information Engineering, Central South University 《Electricity》 2005年第1期21-25,共5页
This paper presents a wavelet neural network (WNN) model combining wavelet transform and artificial neural networks for short term load forecast (STLF). Both historical load and temperature data having important impac... This paper presents a wavelet neural network (WNN) model combining wavelet transform and artificial neural networks for short term load forecast (STLF). Both historical load and temperature data having important impacts on load level were used in the proposed forecasting model. The model used the three-layer feed forward network trained by the error back-propagation algorithm. To enhance the forecast- ing accuracy by neural networks, wavelet multi-resolution analysis method was introduced to pre-process these data and reconstruct the predicted output. The proposed model has been evaluated with actual data of electricity load and temperature of Hunan Province. The simulation results show that the model is capable of providing a reasonable forecasting accuracy in STLF. 展开更多
关键词 short term load forecast stlf neural network wavelet transform
下载PDF
粒子群优化BP算法在短期负荷预测中的应用
9
作者 傅忠云 《山东电力高等专科学校学报》 2007年第4期63-66,共4页
电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量。为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法... 电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量。为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型。通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求。 展开更多
关键词 粒子群算法 BP模型 粒子群优化BP模型 短期负荷预测
下载PDF
相空间重构和混沌神经网络融合的短期负荷预测研究 被引量:44
10
作者 孙雅明 张智晟 《中国电机工程学报》 EI CSCD 北大核心 2004年第1期44-48,共5页
该文首次提出基于PSRT和ICNN融合的电力系统STLF模型,所构造的ICNN预测模型对负荷初值和混沌轨迹的游动性有很强的敏感性,可表征复杂的动力学行为和具有全局寻优的性能,以PSRT确定ICNN输入维数,训练样本集按预测相点步进动态相轨迹和最... 该文首次提出基于PSRT和ICNN融合的电力系统STLF模型,所构造的ICNN预测模型对负荷初值和混沌轨迹的游动性有很强的敏感性,可表征复杂的动力学行为和具有全局寻优的性能,以PSRT确定ICNN输入维数,训练样本集按预测相点步进动态相轨迹和最近邻点集原理形成的,可增强预测模型对混沌动力学的联想和泛化推理能力;文中用遗传算法作为ICNN的学习算法,对两类不同负荷系统日、周预测仿真测试,证实所研究的预测模型能有效、稳定的提高预测精度,且有较高的适应能力,为将基于PSRT和ICNN融合的电力系统STLF方法用于实际运行系统在理论上取得了有效的进展。 展开更多
关键词 电力系统 短期负荷预测 混沌 神经网络 相空间重构
下载PDF
基于贝叶斯理论和在线学习支持向量机的短期负荷预测 被引量:36
11
作者 赵登福 庞文晨 +1 位作者 张讲社 王锡凡 《中国电机工程学报》 EI CSCD 北大核心 2005年第13期8-13,共6页
该文将贝叶斯理论用于短期负荷预测(STLF)中输入特征的自适应选取。该理论将所有能够获得的信息,包括样本信息和先验知识结合在一起加以利用,不但避免了过拟合问题,而且简化了预测模型。文中同时建立了基于支持向量机(SVM)在线学习的短... 该文将贝叶斯理论用于短期负荷预测(STLF)中输入特征的自适应选取。该理论将所有能够获得的信息,包括样本信息和先验知识结合在一起加以利用,不但避免了过拟合问题,而且简化了预测模型。文中同时建立了基于支持向量机(SVM)在线学习的短期负荷预测模型。在充分利用SVM解的稀疏性并结合KKT条件的基础上,以递增和递减算法可直接得到新的回归函数而无需重新训练,从而提高了一般SVM方法进行负荷预测的计算速度。多个实际系统的预测算例表明了该方法在预测精度和预测速度方面的有效性。 展开更多
关键词 电力系统 短期负荷预测 支持向量机 贝叶斯理论 特征选取 在线学习
下载PDF
基于深度递归神经网络的电力系统短期负荷预测模型 被引量:41
12
作者 于惠鸣 张智晟 +1 位作者 龚文杰 段晓燕 《电力系统及其自动化学报》 CSCD 北大核心 2019年第1期112-116,共5页
针对电力负荷非线性动态特性导致的负荷预测困难、预测精度低等问题,本文构建了深度递归神经网络短期负荷预测模型。在深度神经网络多隐层结构的基础上,深度递归神经网络增设了关联层,并以改进粒子群算法作为网络的优化学习算法,对模型... 针对电力负荷非线性动态特性导致的负荷预测困难、预测精度低等问题,本文构建了深度递归神经网络短期负荷预测模型。在深度神经网络多隐层结构的基础上,深度递归神经网络增设了关联层,并以改进粒子群算法作为网络的优化学习算法,对模型权值空间进行深度优化。对某地区电网实际负荷进行预测仿真,结果表明与BP网络、深度神经网络相比,深度递归神经网络的平均绝对误差的周平均值分别降低1.61%和0.56%,验证了深度递归神经网络能够融合前馈与反馈连接,提高网络泛化能力,有效提高负荷预测精度。 展开更多
关键词 深度神经网络 深度递归神经网络 改进粒子群优化算法 短期负荷预测 电力系统
下载PDF
优化相空间近邻点与递归神经网络融合的短期负荷预测 被引量:24
13
作者 张智晟 孙雅明 +1 位作者 王兆峰 李芳 《中国电机工程学报》 EI CSCD 北大核心 2003年第8期44-49,共6页
根据在相空间重构拓扑近邻点的时间演化原理,提出了优化近邻点(optimal neighbor points, ONP)的短期负荷预测(Short-term load forecasting, STLF)法,它可克服伪近邻点在高嵌入维对局域动力学估计的不利影响,以提高预测精度。在此基础... 根据在相空间重构拓扑近邻点的时间演化原理,提出了优化近邻点(optimal neighbor points, ONP)的短期负荷预测(Short-term load forecasting, STLF)法,它可克服伪近邻点在高嵌入维对局域动力学估计的不利影响,以提高预测精度。在此基础上,又提出ONP与递归性时延神经网络(Time Delay Neural Network, TDNN)模型融合的STLF法, 具有动态性能的TDNN是按优化近邻相点的演化轨迹构造,是属于对预测点跟踪的智能辩识动态行为模型。它能增强模型对系统动力学的联想性和泛化能力,使预测精度提高一倍以上。该文经两类不同负荷系统周、日预测仿真测试,证实所研究的预测模型能有效、稳定地提高预测精度,且有高的适应能力,为基于相空间理论预测法用于实际取得有效的进展。 展开更多
关键词 电力系统 电网 短期负荷预测 优化 相空间近邻点 递归神经网络
下载PDF
短期负荷预测相关因素的自适应训练 被引量:18
14
作者 高峰 康重庆 +4 位作者 程旭 沈瑜 夏清 彭涛 周安石 《电力系统自动化》 EI CSCD 北大核心 2002年第18期6-10,共5页
提高预测精度是短期负荷预测的基本目标。目前已提出了处理相关因素的规范策略和短期负荷预测的综合模型。在此基础上 ,将自适应训练的思想引入到短期负荷预测相关因素处理中 ,提出了相关因素自适应训练的若干概念 ,并分析了自适应训练... 提高预测精度是短期负荷预测的基本目标。目前已提出了处理相关因素的规范策略和短期负荷预测的综合模型。在此基础上 ,将自适应训练的思想引入到短期负荷预测相关因素处理中 ,提出了相关因素自适应训练的若干概念 ,并分析了自适应训练中的基本问题 ,给出了短期负荷预测过程的抽象化模型 ,提出了两种训练负荷相关因素的算法 :摄动算法和遗传算法 ,最后比较了这两种算法的优缺点。算例分析表明 ,通过自适应训练相关因素 。 展开更多
关键词 短期负荷预测 虚拟预测 综合模型 摄动算法 遗传算法 电力系统
下载PDF
基于模糊信息粒化与多策略灵敏度的短期日负荷曲线预测 被引量:23
15
作者 李滨 覃芳璐 +1 位作者 吴茵 黄佳 《电工技术学报》 EI CSCD 北大核心 2017年第9期149-159,共11页
针对气象变化时负荷曲线预测精度低、预测模型不能完全适应气象变化的情况,提出了一种基于模糊信息粒化与多策略灵敏度的短期日负荷曲线预测方法。提出了完全气象因子序列的概念,建立气象粒化集;采用空间多元回归及滞后模型结合多策略... 针对气象变化时负荷曲线预测精度低、预测模型不能完全适应气象变化的情况,提出了一种基于模糊信息粒化与多策略灵敏度的短期日负荷曲线预测方法。提出了完全气象因子序列的概念,建立气象粒化集;采用空间多元回归及滞后模型结合多策略灵敏度分析法,建立了针对复杂气象条件下的极值预测模型;基于改进的K-means聚类分析法查找并获取气象特征日,计算初步预测曲线,主动判断预测曲线畸变概率并进行优化修正,得到最佳预测日负荷曲线;利用动态数据流对模型参数进行更新,实现精细化预测。最后采用该方法对我国南方某地区全年负荷曲线进行预测,验证了模型在多种气象条件下的预测准确性,尤其适用于短期内气象存在复杂变化的情形。 展开更多
关键词 短期日负荷预测 完全气象因子 信息粒化 空间多元回归灵敏度 改进K-means聚类
下载PDF
基于模糊C均值聚类-变分模态分解和群智能优化的多核神经网络短期负荷预测模型 被引量:21
16
作者 王煜尘 窦银科 孟润泉 《高电压技术》 EI CAS CSCD 北大核心 2022年第4期1308-1319,共12页
电力系统的运行和控制中,短期负荷预测(short-term load forecasting,STLF)起着至关重要的作用。由于负荷的随机性和复杂性,准确预测负荷成为一项挑战。该文将结合了模糊C均值聚类(fuzzy C-means clustering,FCM)理论、变分模态分解(var... 电力系统的运行和控制中,短期负荷预测(short-term load forecasting,STLF)起着至关重要的作用。由于负荷的随机性和复杂性,准确预测负荷成为一项挑战。该文将结合了模糊C均值聚类(fuzzy C-means clustering,FCM)理论、变分模态分解(variational modal decomposition,VMD)和混沌粒子群优化(chaotic particle swarm optimization,CPSO)算法的多核极限学习机(multi-kernel extreme learning machine,MKELM)引入到预测模型中,构建聚类、分解、优化、训练、预测的负荷预测模型。然后基于已用于中国南极内陆泰山站能源系统的短期负荷预测应用案例,在原有模型基础上改进后获得适用于中国国内用电负荷预测模型。模型训练结果对比表明,该新模型在负荷短期预测中具有较高精度,能够反映区域用电负荷的变化趋势,研究成果为各种场景的用电负荷预测提供了新方法和新思路。 展开更多
关键词 模糊C均值聚类 变分模态分解 混沌粒子群优化 多核极限学习机 短期负荷预测
下载PDF
基于VMD-PSO-多核极限学习机的短期负荷预测 被引量:17
17
作者 吴松梅 蒋建东 +1 位作者 燕跃豪 鲍薇 《电力系统及其自动化学报》 CSCD 北大核心 2022年第5期18-25,共8页
为提高短期负荷预测精度,解决核极限学习机单一核函数难以适应负荷多数据特征的问题,提出了一种基于变分模态分解与粒子群优化的多核极限学习机模型。该模型采用变分模态分解技术将原始负荷序列分解为具有不同特征频率的子序列,并对每... 为提高短期负荷预测精度,解决核极限学习机单一核函数难以适应负荷多数据特征的问题,提出了一种基于变分模态分解与粒子群优化的多核极限学习机模型。该模型采用变分模态分解技术将原始负荷序列分解为具有不同特征频率的子序列,并对每个子序列建立预测模型。负荷预测模型采用粒子群优化的多核极限学习机,其使用混合核函数代替单一的核函数,使其在不同的参数下不仅有良好的局部搜索能力,同时也加强了全局搜索能力。实验表明,该模型拥有更好的回归精度和泛化能力,能够得到更精确的预测结果。 展开更多
关键词 变分模态分解 粒子群优化算法 核函数 多核极限学习机 短期负荷预测
下载PDF
基于PSO的模糊神经网络短期负荷预测 被引量:11
18
作者 吴杰康 陈明华 陈国通 《电力系统及其自动化学报》 CSCD 北大核心 2007年第1期63-67,共5页
针对短期负荷预测的特点,提出基于粒子群(PSO)优化的模糊神经网络短期负荷预测模型。将PSO与模糊优选人工神经网络进行融合,在对模糊优选神经网络训练中采取PSO算法和梯度下降算法相结合的方法,充分发挥PSO全局寻优的能力和梯度下降局... 针对短期负荷预测的特点,提出基于粒子群(PSO)优化的模糊神经网络短期负荷预测模型。将PSO与模糊优选人工神经网络进行融合,在对模糊优选神经网络训练中采取PSO算法和梯度下降算法相结合的方法,充分发挥PSO全局寻优的能力和梯度下降局部细致搜索优势。对广西某地区进行短期负荷预测,并与实际值进行比较分析,结果表明这一模型应用于短期负荷预测能获得较高的预测精度,是一种行之有效的短期负荷预测方法。 展开更多
关键词 短期负荷预测 粒子群优化 模糊优选神经网络
下载PDF
基于混合粒子群算法的短期负荷预测模型 被引量:14
19
作者 王波 邰能灵 +3 位作者 翟海青 叶剑 朱家栋 漆梁波 《电力系统及其自动化学报》 CSCD 北大核心 2008年第3期50-55,共6页
由于电力负荷内在的非线性特性,传统基于梯度搜索的参数辨识技术可能陷入局部最优,影响了预测精度,故提出了混合进化和粒子群优化算法。将进化算法的基本思想引入粒子群优化算法,不但保持了粒子群算法结构简单、易于实现的特点,而且充... 由于电力负荷内在的非线性特性,传统基于梯度搜索的参数辨识技术可能陷入局部最优,影响了预测精度,故提出了混合进化和粒子群优化算法。将进化算法的基本思想引入粒子群优化算法,不但保持了粒子群算法结构简单、易于实现的特点,而且充分发挥了进化算法的全局搜索能力,可有效提高算法的精度和收敛速度。对上海地区电网进行短期负荷预测,与实际值相比较,结果表明,该算法具有较高的预测精度,是一种有效的短期预测方法。 展开更多
关键词 外源自回归动平均 进化算法 粒子群优化 短期负荷预测
下载PDF
短期负荷预测神经网络方法比较 被引量:12
20
作者 李晓波 罗枚 冯凯 《继电器》 CSCD 北大核心 2007年第6期49-53,共5页
以某地区购网有功功率的负荷数据为背景,建立了三个BP神经网络负荷预测模型——SDBP、LMBP及BRBP模型进行短期负荷预测工作,并对其结果进行比较。针对传统的BP算法具有训练速度慢,易陷入局部最小点的缺点,采用具有较快收敛速度及稳定性... 以某地区购网有功功率的负荷数据为背景,建立了三个BP神经网络负荷预测模型——SDBP、LMBP及BRBP模型进行短期负荷预测工作,并对其结果进行比较。针对传统的BP算法具有训练速度慢,易陷入局部最小点的缺点,采用具有较快收敛速度及稳定性的L-M优化算法进行预测,使平均相对误差有了很大改善,具有良好的应用前景。而采用贝叶斯正则化算法可以解决网络过度拟合,提高网络的推广能力,使平均相对误差和每日峰值相对误差降低,但收敛速度过慢(慢于SDBP模型),不适于在实际应用中采用。 展开更多
关键词 短期负荷预测 人工神经网络 L-M算法 贝叶斯正则化算法 优化算法
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部