期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合U-Net和STGAN的多时相遥感图像云去除算法
1
作者 王卓 马骏 +3 位作者 郭毅 周川杰 柏彬 李峰 《遥感学报》 EI CSCD 北大核心 2024年第8期2089-2100,共12页
针对光学遥感图像中云的遮挡可能会降低甚至完全遮挡图像中的某些地面覆盖信息,限制对地观测、变化检测或土地覆盖分类等的问题,云去除是迫切需要解决的一项重要任务。为了恢复被云遮挡的地面区域,提出一种基于多时相遥感图像的两阶段... 针对光学遥感图像中云的遮挡可能会降低甚至完全遮挡图像中的某些地面覆盖信息,限制对地观测、变化检测或土地覆盖分类等的问题,云去除是迫切需要解决的一项重要任务。为了恢复被云遮挡的地面区域,提出一种基于多时相遥感图像的两阶段云去除算法。第一阶段是云分割,即直接使用U-Net提取云并去除薄云。第二阶段是图像恢复,采用时空生成网络(STGAN)去除厚云,STGAN的生成模型采用改进的多输入的U-Net,通过一次从同一位置的7帧图像序列中提取关键特征恢复相应的不规则厚云覆盖区域。第一阶段的薄云处理有利于后面的STGAN捕捉到更多的地面信息。实验结果表明,与传统的去云方法和深度学习Pix2Pix等算法相比较,该算法无论在视觉效果上,还是峰值信噪比(PSNR)与结构相似性(SSIM)等客观质量评价指标上,均有显著的提升,有利于光学遥感图像的进一步利用。 展开更多
关键词 遥感图像 多时相 云去除 图像恢复 U-Net stgan
原文传递
Distributed spatio-temporal generative adversarial networks
2
作者 QIN Chao GAO Xiaoguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期578-592,共15页
Owing to the wide range of applications in various fields,generative models have become increasingly popular.However,they do not handle spatio-temporal features well.Inspired by the recent advances in these models,thi... Owing to the wide range of applications in various fields,generative models have become increasingly popular.However,they do not handle spatio-temporal features well.Inspired by the recent advances in these models,this paper designs a distributed spatio-temporal generative adversarial network(STGAN-D)that,given some initial data and random noise,generates a consecutive sequence of spatio-temporal samples which have a logical relationship.This paper builds a spatio-temporal discriminator to distinguish whether the samples generated by the generator meet the requirements for time and space coherence,and builds a controller for distributed training of the network gradient updated to separate the model training and parameter updating,to improve the network training rate.The model is trained on the skeletal dataset and the traffic dataset.In contrast to traditional generative adversarial networks(GANs),the proposed STGAN-D can generate logically coherent samples with the corresponding spatial and temporal features while avoiding mode collapse.In addition,this paper shows that the proposed model can generate different styles of spatio-temporal samples given different random noise inputs,and the controller can improve the network training rate.This model will extend the potential range of applications of GANs to areas such as traffic information simulation and multiagent adversarial simulation. 展开更多
关键词 distributed spatio-temporal generative adversarial network(stgan-D) spatial discriminator temporal discriminator speed controller
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部