期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
青藏高原不同土地覆盖类型下积雪面积判别算法优化 被引量:2
1
作者 谢佩瑶 韩超 +1 位作者 欧阳志棋 王晓艳 《冰川冻土》 CSCD 北大核心 2023年第3期1168-1179,共12页
MODIS V006版本数据仅提供了归一化积雪指数(NDSI),而用户往往关心的是直观的积雪分类,包括积雪范围或积雪覆盖率。美国国家冰雪数据中心推荐全球积雪范围最佳的NDSI阈值为0.4,但是青藏高原地形复杂多样,积雪斑块化特征明显,单一阈值并... MODIS V006版本数据仅提供了归一化积雪指数(NDSI),而用户往往关心的是直观的积雪分类,包括积雪范围或积雪覆盖率。美国国家冰雪数据中心推荐全球积雪范围最佳的NDSI阈值为0.4,但是青藏高原地形复杂多样,积雪斑块化特征明显,单一阈值并不能精确地判识不同下垫面上的积雪。青藏高原被称为地球的第三极,是中国三大稳定积雪区之一,蕴藏了大量的淡水资源。随着全球气候变暖,青藏高原地区积雪融化时间提前,冰川融水增加,影响河流水量,造成洪涝灾害,进而影响人类正常生产生活,因此通过确定不同下垫面阈值,改善传统阈值的积雪高估低估现象,提高积雪识别精度,进而更准确地探究青藏高原积雪状况,显得尤为迫切。本文以青藏高原为研究对象,首先生成MODIS逐日无云NDSI序列并进行验证;其次对应站点雪深数据与NDSI序列,证实在下垫面为林地和非林地的区域,去云NDSI序列与站点雪深均有良好的对应关系,确定不同下垫面最优阈值范围;最后在最优阈值范围内通过混淆矩阵确定最优阈值。计算得出,林地NDSI=0.03时,总体精度最高为94.02%,在该NDSI之下,高估误差OE和低估误差UE分别为1.21%和4.60%;非林地NDSI=0.26时,总体精度OA最高为94.27%,在该NDSI之下,高估误差OE和低估误差UE分别为0.51%和5.03%。因此选取优化后林地阈值为NDSI=0.03,非林地阈值为NDSI=0.26。为避免地面常规观测资料尺度上的局限性,本文采用高精度的Landsat 8 OLI卫星数据识别结果,作为“真值”对优化后阈值的判别结果进行“像元—像元”级别的验证。在定量验证中,优化后NDSI阈值对MOD10A1 V006积雪判别结果的总体精度OA为84.21%,高估误差OE为5.33%,低估误差UE为10.46%;传统阈值对MOD10A1 V006积雪判别结果的总体精度OA为82.86%,高估误差OE为1.48%,低估误差UE为15.66%。可以看出在定量验证中,优化后阈值的积雪判别精度更 展开更多
关键词 stagfm 青藏高原 林地 积雪提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部