由于SSOR预条件共轭梯度算法中预条件方程求解需要前推和回代,导致算法迁移到GPU平台上并行效率不高.为此,基于诺依曼多项式分解技术,提出了一种GPU加速的SSOR稀疏近似逆预条件子(GSSORSAI).它不仅保持了原线性系统系数矩阵的稀疏和对...由于SSOR预条件共轭梯度算法中预条件方程求解需要前推和回代,导致算法迁移到GPU平台上并行效率不高.为此,基于诺依曼多项式分解技术,提出了一种GPU加速的SSOR稀疏近似逆预条件子(GSSORSAI).它不仅保持了原线性系统系数矩阵的稀疏和对称正定特性,而且预条件方程求解仅需一次稀疏矩阵矢量乘运算,避免了前推和回代过程.实验结果表明:在NVIDIA Tesla C2050GPU上,对比使用Python在单个CPU上SSOR稀疏近似逆预条件子实现方法,GSSORSAI平均快将近100倍;应用到并行的PCG算法中,相比无预条件的CG算法,平均提高了算法的3倍的收敛速度.展开更多
采用广义变分原理,基于矢量基函数详细推导了大地电磁三维矢量有限元方程。为了提高计算精度和效率,应用直接法强加边界条件改善总体系数矩阵的条件数,同时使用SSOR(symmetric successive over relaxation)预处理的双共轭稳定梯度法求...采用广义变分原理,基于矢量基函数详细推导了大地电磁三维矢量有限元方程。为了提高计算精度和效率,应用直接法强加边界条件改善总体系数矩阵的条件数,同时使用SSOR(symmetric successive over relaxation)预处理的双共轭稳定梯度法求解复对称大型稀疏线性方程组。并利用国际标准模型与相关参考文献的结果进行了对比,验证了算法的准确性。对一个典型的三维低阻体模型进行正演,得到了不同测线的视电阻率和相位断面图,并与二维正演结果进行对比分析。结果表明:在x方向测线上,ρ_(yx)变化幅度较ρ_(xy)小,中心测线上的ρ_(yx)和ρ_(xy)响应均与二维TM模式条件下的响应特征相似。展开更多
文摘由于SSOR预条件共轭梯度算法中预条件方程求解需要前推和回代,导致算法迁移到GPU平台上并行效率不高.为此,基于诺依曼多项式分解技术,提出了一种GPU加速的SSOR稀疏近似逆预条件子(GSSORSAI).它不仅保持了原线性系统系数矩阵的稀疏和对称正定特性,而且预条件方程求解仅需一次稀疏矩阵矢量乘运算,避免了前推和回代过程.实验结果表明:在NVIDIA Tesla C2050GPU上,对比使用Python在单个CPU上SSOR稀疏近似逆预条件子实现方法,GSSORSAI平均快将近100倍;应用到并行的PCG算法中,相比无预条件的CG算法,平均提高了算法的3倍的收敛速度.
文摘采用广义变分原理,基于矢量基函数详细推导了大地电磁三维矢量有限元方程。为了提高计算精度和效率,应用直接法强加边界条件改善总体系数矩阵的条件数,同时使用SSOR(symmetric successive over relaxation)预处理的双共轭稳定梯度法求解复对称大型稀疏线性方程组。并利用国际标准模型与相关参考文献的结果进行了对比,验证了算法的准确性。对一个典型的三维低阻体模型进行正演,得到了不同测线的视电阻率和相位断面图,并与二维正演结果进行对比分析。结果表明:在x方向测线上,ρ_(yx)变化幅度较ρ_(xy)小,中心测线上的ρ_(yx)和ρ_(xy)响应均与二维TM模式条件下的响应特征相似。