期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SSA-CNN-BiLSTM组合模型的短时交通流量预测
1
作者 陆由付 孔维麟 +2 位作者 田垚 王庆斌 牟振华 《交通运输研究》 2024年第1期18-27,共10页
为改善城市道路交通拥堵状况,并为智能交通系统决策提供辅助手段,针对短时交通流的非线性和时序性特点,构建了一种基于麻雀搜索算法(SSA)优化的卷积神经网络(CNN)联合双向长短时记忆神经网络(BiLSTM)的组合模型以预测短时交通流量。首先... 为改善城市道路交通拥堵状况,并为智能交通系统决策提供辅助手段,针对短时交通流的非线性和时序性特点,构建了一种基于麻雀搜索算法(SSA)优化的卷积神经网络(CNN)联合双向长短时记忆神经网络(BiLSTM)的组合模型以预测短时交通流量。首先,对原始交通流数据进行异常值清洗、小波阈值去噪和归一化处理。然后,利用SSA算法对CNN与BiLSTM组合网络中的隐藏层单元数、初始学习率和L2正则化系数三个超参数迭代寻优。最后,将搜索得到的最优超参数组合输入搭建好的组合网络中进行训练和预测。实验结果显示:与粒子群优化(PSO)和灰狼优化(GWO)算法相比,SSA算法在网络超参数寻优过程中的收敛速度更快,全局寻优能力更强;与3种对比模型(CNNBiLSTM、BiLSTM和LSTM)相比,在5 min时间尺度划分下,SSA-CNN-BiLSTM组合模型的均方根误差(RMSE)分别降低了5.46、12.78、20.38,平均绝对百分比误差(MAPE)分别降低了0.49%、2.24%、3.11%;在15 min时间尺度划分下,SSA-CNN-BiLSTM组合模型的RMSE分别降低了9.70、28.42、41.18,MAPE分别降低了0.50%、1.98%、2.59%。研究表明,相比既有算法,该短时交通流量预测组合模型在精度和稳定性上都有所提升,可通过提供更精准的短时交通出行信息来改善道路交通状况。 展开更多
关键词 智能交通 交通流预测 卷积神经网络 城市道路 麻雀搜索算法 双向长短时记忆神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部