A unidirectional surface plasmon polaritons(SPPs) generator with greatly enhanced generation efficiency is proposed. The SPPs generator consists of an asymmetric single nanoslit coated with a polyviny alcohol(PVA) fil...A unidirectional surface plasmon polaritons(SPPs) generator with greatly enhanced generation efficiency is proposed. The SPPs generator consists of an asymmetric single nanoslit coated with a polyviny alcohol(PVA) film and a silver rectangle block. The generation efficiency of this SPPs generator is investigated using the finite difference time domain method. Due to the presence of the silver rectangle block, the SPPs generation efficiency of the asymmetric single nanoslit with PVA film can be greatly enhanced and the corresponding wavelength with the maximum enhancement factor can be tuned flexibly. The influence of the structural parameters on the generation efficiency is also investigated for the enhanced unidirectional SPPs generator.展开更多
A single metallic nanoslit is employed for investigating the contribution of Surface Plasmon Polaritons(SPPs) to Extraordinary Optical Transmission(EOT) based on rigorous electromagnetic theory and the Spectrum Analys...A single metallic nanoslit is employed for investigating the contribution of Surface Plasmon Polaritons(SPPs) to Extraordinary Optical Transmission(EOT) based on rigorous electromagnetic theory and the Spectrum Analysis Method(SAM). Numerical results shows that the SPP is the main factor responsible for the EOT, and a phase singularity is observed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11174237 and 10974161), the National Basic Research Program of China (Grant No. 2013CB328904), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. SWJTU 12CX084 and SWJTU2(/10ZT06), and the Innovation Fund for Ph.D. Student of Southwest Jiaotong University, China.
文摘A unidirectional surface plasmon polaritons(SPPs) generator with greatly enhanced generation efficiency is proposed. The SPPs generator consists of an asymmetric single nanoslit coated with a polyviny alcohol(PVA) film and a silver rectangle block. The generation efficiency of this SPPs generator is investigated using the finite difference time domain method. Due to the presence of the silver rectangle block, the SPPs generation efficiency of the asymmetric single nanoslit with PVA film can be greatly enhanced and the corresponding wavelength with the maximum enhancement factor can be tuned flexibly. The influence of the structural parameters on the generation efficiency is also investigated for the enhanced unidirectional SPPs generator.
基金supported by the National Basic Research Program of China(Grant No.2006CB302901)the InnovationTeam Development Program of the Chinese Ministry of Education(Grant No.IRT0606)
文摘A single metallic nanoslit is employed for investigating the contribution of Surface Plasmon Polaritons(SPPs) to Extraordinary Optical Transmission(EOT) based on rigorous electromagnetic theory and the Spectrum Analysis Method(SAM). Numerical results shows that the SPP is the main factor responsible for the EOT, and a phase singularity is observed.