Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient e...Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.展开更多
TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the...TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.展开更多
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic...As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.展开更多
Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen.However,this process requires a low-cost and high-efficient hydrogen evolution reaction(HER)catalyst to improve th...Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen.However,this process requires a low-cost and high-efficient hydrogen evolution reaction(HER)catalyst to improve the overall reaction efficiency.Molybdenum(Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Ptbased HER catalysts,due to their high activity and stability in a wide pH range.In this review,we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER,including molybdenum alloys,molybdenum sulfides,molybdenum selenides,molybdenum carbides,molybdenum phosphides,molybdenum borides,molybdenum nitrides,and molybdenum oxides.Particular attention is mainly focused on the synthetic methods of Mo-based materials,the strategies for increasing the catalytic activity,and the relationship between structure/composition and electrocatalytic performance.Finally,the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed.展开更多
Based on summarizing previous achievements and characteristics of Asian summer monsoon and the role using data as long and new as possible, the onset of Asian-Australian "land bridge" in the onset of summer monsoon ...Based on summarizing previous achievements and characteristics of Asian summer monsoon and the role using data as long and new as possible, the onset of Asian-Australian "land bridge" in the onset of summer monsoon are further discussed. In particular, the earliest onset area of Asian summer monsoon is comparatively analyzed, and the sudden and progressive characteristics of the onset of summer monsoon in different regions are discussed, Furthermore, the relationships among such critical events during the onset of Asian summer monsoon as the splitting of subtropical high belt over the Bay of Bengal (BOB), the initiation of convection over Indo-China Peninsula, the westward advance, reestablishment of South Asian High, and the rapid northward progression of convection originated from Sumatra in early summer are studied. The important impact of the proper collocation of she latent heating over Indo-China Peninsula and the sensible heating over Indian Peninsula on the splitting of the subtropical high belt, the deepening of BOB trough, the activating of Sri Lanka vortex (twin vortexes in the Northern and Southern Hemispheres), and the subsequent onset of South China Sea summer monsoon are emphasized.展开更多
Exploring bifunctional catalysts for the hydrogen and oxygen evolution reactions (HER and OER) with high efficiency, low cost, and easy integration is extremely crucial for future renewable energy systems. Herein, t...Exploring bifunctional catalysts for the hydrogen and oxygen evolution reactions (HER and OER) with high efficiency, low cost, and easy integration is extremely crucial for future renewable energy systems. Herein, ternary NiCoP nanosheet arrays (NSAs) were fabricated on 3D Ni foam by a facile hydrothermal method followed by phosphorization. These arrays serve as bifunctional alkaline catalysts, exhibiting excellent electrocatalytic performance and good working stability for both the HER and OER. The overpotentials of the NiCoP NSA electrode required to drive a current density of 50 mA/cm2 for the HER and OER are as low as 133 and 308 mV, respectively, which is ascribed to excellent intrinsic electrocatalytic activity, fast electron transport, and a unique superaerophobic structure. When NiCoP was integrated as both anodic and cathodic material, the electrolyzer required a potential as low as -1.77 V to drive a current density of 50 mA/cm2 for overall water splitting, which is much smaller than a reported electrolyzer using the same kind of phosphide-based material and is even better than the combination of Pt/C and Ir/C, the best known noble metal-based electrodes. Combining satisfactory working stability and high activity, this NiCoP electrode paves the way for exploring overall water splitting catalysts.展开更多
When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave ...When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave (PFS) is parallel to both the strike of the cracks and the direction of maximum horizontal stress, therefore it is possible to use PFS to study stress in the crust. This study discusses several examples in which PFS is applied to deduce the compressive stress in North China, Longmenshan fault zone of east edge of Tibetan plateau and Yunnan zone of southeast edge of Tibetan plateau, also discusses temporal variations of PFS orientations of 1999 Xiuyan earthquake sequences of northeastern China. The results are consistent to those of other independent traditional stress measurements. There is a bridge between crustal PFS and the crustal principal compressive stress although there are many unclear disturbance sources. This study suggests the PFS results could be used to deduce regional and in situ principal compressive stress in the crust only if there are enough seismic stations and enough data. At least, PFS is a useful choice in the zone where there are a large number of dense seismic stations.展开更多
The development of high-efficiency electrocatalysts for oxygen evolution reactions (OERs) plays an important role in the water-splitting process. Herein, we report a facile way to obtain two-dimensional (2D) singl...The development of high-efficiency electrocatalysts for oxygen evolution reactions (OERs) plays an important role in the water-splitting process. Herein, we report a facile way to obtain two-dimensional (2D) single-unit-cell-thick layered double hydroxide (LDH) nanosheets (NSs, - 1.3 nm) within only 5 min. These nanosheets presented significantly enhanced OER performance compared to bulk LDH systems fabricated using the conventional co-precipitation method. The current strategy further allowed control over the chemical compositions and electrochemical activities of the LDH NSs. For example, CoFe-LDH NSs presented the lowest overpotential of 0.28 V at 10 mA/cm2, and the NiFe-LDHs NSs showed Tafel slopes of 33.4 mV/decade and nearly 100% faradaic efficiency, thus outperforming state-of-the-art IrO2 water electrolysis catalysts. Moreover, positron annihilation lifetime spectroscopy and high-resolution transmission electron microscopy observations confirmed that rich defects and distorted lattices occurred within the 2D LDH NSs, which could supply abundant electrochemically active OER sites. Periodic calculations based on density functional theory (DFT) further showed that the CoFe- and NiFe-LDHs presented very low energy gaps and obvious spin-polarization behavior, which facilitated high electron mobility during the OER process. Therefore, this work presents a combined experimental and theoretical study on 2D single-unit-cell-thick LDH NSs with high OER activities, which have potential application in water splitting for renewable energy.展开更多
Over the past 10 years, the number of broadband seismic stations in China has increased significantly. The broadband seismic records contain information about shear-wave splitting which plays an important role in reve...Over the past 10 years, the number of broadband seismic stations in China has increased significantly. The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland. Based on teleseismic SKS and SKKS phases recorded in the seismic stations, we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting. We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers. From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs. These splitting parameters re- veal the complexity of the upper mantle anisotropy image. Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland, with an average shear-wave time delay of 0,95 s; the anisotropy in the western region is slightly larger (1.01 s) than in the eastern region (0.92 s). On a larger scale, the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode, i.e. the crust-lithospheric mantle coherent deformation. In eastern China, the average fast-wave direction is approximately parallel to the direction of the absolute plate motion; thus, the upper mantle anisotropy can be attributed to the asthenospheric flow. The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions, where the anisotropy images are more complicated, exhibiting "fossil" anisotropy and/or two-layer anis^3trc^py. The c^llisi(3n between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland, while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate be展开更多
Hydrogen energy,a new type of clean and efficient energy,has assumed precedence in decarbonizing and building a sustainable carbon-neutral economy.Recently,hydrogen production from water splitting has seen considerabl...Hydrogen energy,a new type of clean and efficient energy,has assumed precedence in decarbonizing and building a sustainable carbon-neutral economy.Recently,hydrogen production from water splitting has seen considerable advancements owing to its advantages such as zero carbon emissions,safety,and high product purity.To overcome the large energy barrier and high cost of water splitting,numerous efficient electrocatalysts have been designed and reported.However,various difficulties in promoting the industrialization of electrocatalytic water splitting remain.Further,as high-performance electrocatalysts that satisfy industrial requirements are urgently needed,a better understanding of water-splitting systems is required.In this paper,the latest progress in water electrolysis is reviewed,and experimental evidence from in situ/operando spectroscopic surveys and computational analyses is summarized to present a mechanistic understanding of hydrogen and oxygen evolution reactions.Furthermore,some promising strategies,including alloying,morphological engineering,interface construction,defect engineering,and strain engineering for designing and synthesizing electrocatalysts are highlighted.We believe that this review will provide a knowledge-guided design in fundamental science and further inspire technical engineering developments for constructing efficient electrocatalysts for water splitting.展开更多
A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of...A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of rock-like material, a set of micro-parameters in PFC2D that reflected the macro-mechanical behavior of rock-like materials were obtained. And then PFC2D was used to simulate Brazilian splitting test for jointed rock mass specimens and specimen containing a central straight notch. The effect of joint angle and notch angle on the tensile strength and failure mode of jointed rock specimens was detailed analyzed. In order to reveal the meso-mechanical mechanism of crack coalescence, displacement trend lines were applied to analyze the displacement evolution during the crack initiation and propagation. The investigated conclusions can be described as follows. (1) The tensile strength of jointed rock mass disc specimen is dependent to the joint angle. As the joint angle increases, the tensile strength of jointed rock specimen takes on a nonlinear variance. (2) The tensile strength of jointed rock mass disc specimen containing a central straight notch distributes as a function of both joint angle and notch angle. (3) Three major failure modes, i.e., pure tensile failure, shear failure and mixed tension and shear failure mode are observed in jointed rock mass disc specimens under Brazilian test. (4) The notch angle roles on crack initiation and and joint angle play important propagation characteristics of jointed rock mass disc specimen containing a central straight notch under Brazilian test.展开更多
文摘Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.
基金supported by the National Natural Science Foundation of China(51602207,21433007,51320105001,21573170)the Self-determined and Innovative Research Funds of SKLWUT(2017-ZD-4,2016-KF-17)the Natural Science Foundation of Hubei Province of China(2015CFA001)~~
文摘TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.
基金supported by Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/IENG/0013)financial assistance and faculty start-up grants/supports from Xiamen University~~
文摘As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.
基金financially supported by the National Natural Science Foundation of China(Nos.51772249 and 51821091)the Fundamental Research Funds for the Central Universities(Nos.G2017KY0308 and 3102019JC005)+2 种基金the Natural Science Foundation of Shaanxi Province(Nos.2018JM5092 and 2019JLM-26)the Innovation Program for Talent(No.2019KJXX066)the Post-doctoral Program of Shaanxi Province(No.2018BSHTDZZ16)
文摘Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen.However,this process requires a low-cost and high-efficient hydrogen evolution reaction(HER)catalyst to improve the overall reaction efficiency.Molybdenum(Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Ptbased HER catalysts,due to their high activity and stability in a wide pH range.In this review,we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER,including molybdenum alloys,molybdenum sulfides,molybdenum selenides,molybdenum carbides,molybdenum phosphides,molybdenum borides,molybdenum nitrides,and molybdenum oxides.Particular attention is mainly focused on the synthetic methods of Mo-based materials,the strategies for increasing the catalytic activity,and the relationship between structure/composition and electrocatalytic performance.Finally,the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed.
基金the National Key Program for Developing Basic Sciences under Grant Nos. 2006CB403607 the National Natural Science Foundation of China under Grant Nos. 40305005 and 40135020.
文摘Based on summarizing previous achievements and characteristics of Asian summer monsoon and the role using data as long and new as possible, the onset of Asian-Australian "land bridge" in the onset of summer monsoon are further discussed. In particular, the earliest onset area of Asian summer monsoon is comparatively analyzed, and the sudden and progressive characteristics of the onset of summer monsoon in different regions are discussed, Furthermore, the relationships among such critical events during the onset of Asian summer monsoon as the splitting of subtropical high belt over the Bay of Bengal (BOB), the initiation of convection over Indo-China Peninsula, the westward advance, reestablishment of South Asian High, and the rapid northward progression of convection originated from Sumatra in early summer are studied. The important impact of the proper collocation of she latent heating over Indo-China Peninsula and the sensible heating over Indian Peninsula on the splitting of the subtropical high belt, the deepening of BOB trough, the activating of Sri Lanka vortex (twin vortexes in the Northern and Southern Hemispheres), and the subsequent onset of South China Sea summer monsoon are emphasized.
基金This work was support by the National Natural Science Foundation of China (Nos. 21125101 and 21520102002), the Program for Changjiang Scholars and Innovative Research Team in the University, and the Fundamental Research Funds for the Central Universities, and the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of PRC.
文摘Exploring bifunctional catalysts for the hydrogen and oxygen evolution reactions (HER and OER) with high efficiency, low cost, and easy integration is extremely crucial for future renewable energy systems. Herein, ternary NiCoP nanosheet arrays (NSAs) were fabricated on 3D Ni foam by a facile hydrothermal method followed by phosphorization. These arrays serve as bifunctional alkaline catalysts, exhibiting excellent electrocatalytic performance and good working stability for both the HER and OER. The overpotentials of the NiCoP NSA electrode required to drive a current density of 50 mA/cm2 for the HER and OER are as low as 133 and 308 mV, respectively, which is ascribed to excellent intrinsic electrocatalytic activity, fast electron transport, and a unique superaerophobic structure. When NiCoP was integrated as both anodic and cathodic material, the electrolyzer required a potential as low as -1.77 V to drive a current density of 50 mA/cm2 for overall water splitting, which is much smaller than a reported electrolyzer using the same kind of phosphide-based material and is even better than the combination of Pt/C and Ir/C, the best known noble metal-based electrodes. Combining satisfactory working stability and high activity, this NiCoP electrode paves the way for exploring overall water splitting catalysts.
基金supported by International Science and Technology Cooperation Program of China(2010DFB20190)National Natural Science Foundation of China(41040034 and 41174042)the support by basic research project of Institute of Earthquake Science,China Earthquake Administration(2009IES0211)
文摘When propagating through anisotropic rocks in the crust, shear-waves split into faster and slower components with almost orthogonal polarizations. For nearly vertical propagation the polarization of fast shear- wave (PFS) is parallel to both the strike of the cracks and the direction of maximum horizontal stress, therefore it is possible to use PFS to study stress in the crust. This study discusses several examples in which PFS is applied to deduce the compressive stress in North China, Longmenshan fault zone of east edge of Tibetan plateau and Yunnan zone of southeast edge of Tibetan plateau, also discusses temporal variations of PFS orientations of 1999 Xiuyan earthquake sequences of northeastern China. The results are consistent to those of other independent traditional stress measurements. There is a bridge between crustal PFS and the crustal principal compressive stress although there are many unclear disturbance sources. This study suggests the PFS results could be used to deduce regional and in situ principal compressive stress in the crust only if there are enough seismic stations and enough data. At least, PFS is a useful choice in the zone where there are a large number of dense seismic stations.
基金This work was supported by the National Basic Research Program of China (No. 2014CB932103), the National Natural Science Foundation of China (Nos. 21301016 and 21473013), and the Beijing Municipal Natural Science Foundation (No. 2152016).
文摘The development of high-efficiency electrocatalysts for oxygen evolution reactions (OERs) plays an important role in the water-splitting process. Herein, we report a facile way to obtain two-dimensional (2D) single-unit-cell-thick layered double hydroxide (LDH) nanosheets (NSs, - 1.3 nm) within only 5 min. These nanosheets presented significantly enhanced OER performance compared to bulk LDH systems fabricated using the conventional co-precipitation method. The current strategy further allowed control over the chemical compositions and electrochemical activities of the LDH NSs. For example, CoFe-LDH NSs presented the lowest overpotential of 0.28 V at 10 mA/cm2, and the NiFe-LDHs NSs showed Tafel slopes of 33.4 mV/decade and nearly 100% faradaic efficiency, thus outperforming state-of-the-art IrO2 water electrolysis catalysts. Moreover, positron annihilation lifetime spectroscopy and high-resolution transmission electron microscopy observations confirmed that rich defects and distorted lattices occurred within the 2D LDH NSs, which could supply abundant electrochemically active OER sites. Periodic calculations based on density functional theory (DFT) further showed that the CoFe- and NiFe-LDHs presented very low energy gaps and obvious spin-polarization behavior, which facilitated high electron mobility during the OER process. Therefore, this work presents a combined experimental and theoretical study on 2D single-unit-cell-thick LDH NSs with high OER activities, which have potential application in water splitting for renewable energy.
基金supported by the National Natural Science Foundation of China(Grants Nos.90914005,91014006,41174070)the Basic Pro-ject in the Ministry of Science and Technology(Grants No.2006FY1101100)
文摘Over the past 10 years, the number of broadband seismic stations in China has increased significantly. The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland. Based on teleseismic SKS and SKKS phases recorded in the seismic stations, we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting. We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers. From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs. These splitting parameters re- veal the complexity of the upper mantle anisotropy image. Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland, with an average shear-wave time delay of 0,95 s; the anisotropy in the western region is slightly larger (1.01 s) than in the eastern region (0.92 s). On a larger scale, the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode, i.e. the crust-lithospheric mantle coherent deformation. In eastern China, the average fast-wave direction is approximately parallel to the direction of the absolute plate motion; thus, the upper mantle anisotropy can be attributed to the asthenospheric flow. The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions, where the anisotropy images are more complicated, exhibiting "fossil" anisotropy and/or two-layer anis^3trc^py. The c^llisi(3n between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland, while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate be
基金This work was partly supported by the National Natural Science Foundation of China(Nos.52202050,52122308,21905253,and 51973200)the China Postdoctoral Science Foundation(No.2022TQ0286)the Natural Science Foundation of Henan Province(No.202300410372).
文摘Hydrogen energy,a new type of clean and efficient energy,has assumed precedence in decarbonizing and building a sustainable carbon-neutral economy.Recently,hydrogen production from water splitting has seen considerable advancements owing to its advantages such as zero carbon emissions,safety,and high product purity.To overcome the large energy barrier and high cost of water splitting,numerous efficient electrocatalysts have been designed and reported.However,various difficulties in promoting the industrialization of electrocatalytic water splitting remain.Further,as high-performance electrocatalysts that satisfy industrial requirements are urgently needed,a better understanding of water-splitting systems is required.In this paper,the latest progress in water electrolysis is reviewed,and experimental evidence from in situ/operando spectroscopic surveys and computational analyses is summarized to present a mechanistic understanding of hydrogen and oxygen evolution reactions.Furthermore,some promising strategies,including alloying,morphological engineering,interface construction,defect engineering,and strain engineering for designing and synthesizing electrocatalysts are highlighted.We believe that this review will provide a knowledge-guided design in fundamental science and further inspire technical engineering developments for constructing efficient electrocatalysts for water splitting.
基金supported by the National Basic Research Programof China(2014CB046905)the Fundamental Research Funds for the Central Universities(China University of Mining and Technology)(2014YC10)
文摘A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of rock-like material, a set of micro-parameters in PFC2D that reflected the macro-mechanical behavior of rock-like materials were obtained. And then PFC2D was used to simulate Brazilian splitting test for jointed rock mass specimens and specimen containing a central straight notch. The effect of joint angle and notch angle on the tensile strength and failure mode of jointed rock specimens was detailed analyzed. In order to reveal the meso-mechanical mechanism of crack coalescence, displacement trend lines were applied to analyze the displacement evolution during the crack initiation and propagation. The investigated conclusions can be described as follows. (1) The tensile strength of jointed rock mass disc specimen is dependent to the joint angle. As the joint angle increases, the tensile strength of jointed rock specimen takes on a nonlinear variance. (2) The tensile strength of jointed rock mass disc specimen containing a central straight notch distributes as a function of both joint angle and notch angle. (3) Three major failure modes, i.e., pure tensile failure, shear failure and mixed tension and shear failure mode are observed in jointed rock mass disc specimens under Brazilian test. (4) The notch angle roles on crack initiation and and joint angle play important propagation characteristics of jointed rock mass disc specimen containing a central straight notch under Brazilian test.