A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a...A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.展开更多
为深入研究柔性导爆索在爆炸分离装置中的作用过程和机理,提出一种改进的光滑粒子流体动力学方法(smoothed particle hydrodynamics,SPH)与有限单元法(finite element method,FEM)耦合算法。新方法中不仅包含导爆索模拟的SPH方法与分离...为深入研究柔性导爆索在爆炸分离装置中的作用过程和机理,提出一种改进的光滑粒子流体动力学方法(smoothed particle hydrodynamics,SPH)与有限单元法(finite element method,FEM)耦合算法。新方法中不仅包含导爆索模拟的SPH方法与分离装置模拟的FEM方法之间的接触算法,同时将完全损伤失效后的单元采用转化算法动态转化成SPH粒子继续参与计算,转化后的粒子与未转化的有限单元之间采用接触算法计算。采用该方法对环型和平板型两种爆炸分离结构的分离过程进行了数值模拟,验证了新方法的准确性与问题适用性;分析了分离板的变形断裂及损伤碎片的飞溅过程,得到了分离装置表面不同时刻的应力分布、损伤因子的变化趋势、von Mises应力的变化趋势;探讨了炸药在不同比内能情况下单元的屈服损伤速度、碎片的飞溅位移速度。展开更多
基金supported by Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration(Grant Nos.2021B06,2021C05)Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2021E122).
文摘A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.