We consider the Sparre Andersen model modified by the inclusion of interest on the surplus. Approximation for the ultimate ruin probability is derived by rounding. And upper bound and lower bound are also derived by r...We consider the Sparre Andersen model modified by the inclusion of interest on the surplus. Approximation for the ultimate ruin probability is derived by rounding. And upper bound and lower bound are also derived by rounding-down and rounding-up respectively. According to the upper bound and lower bound, we can easily obtain the error estimation of the approximation. Applications of the results to the compound Poisson model are given.展开更多
In this paper, we consider the distribution of the maximum surplus before ruin in a generalized Erlang(n) risk process (i.e., convolution of n exponential distributions with possibly different parameters) perturbe...In this paper, we consider the distribution of the maximum surplus before ruin in a generalized Erlang(n) risk process (i.e., convolution of n exponential distributions with possibly different parameters) perturbed by diffusion. It is shown that the maximum surplus distribution before ruin satisfies the integro-differential equation with certain boundary conditions. Explicit expressions are obtained when claims amounts are rationally distributed. Finally, the surplus distribution at the time of ruin and the surplus distribution immediately before ruin are presented.展开更多
In this paper, we investigate a Sparre Andersen risk model perturbed by diffusion with phase-type inter-claim times. We mainly study the distribution of maximum surplus prior to ruin. A matrix form of integro-differen...In this paper, we investigate a Sparre Andersen risk model perturbed by diffusion with phase-type inter-claim times. We mainly study the distribution of maximum surplus prior to ruin. A matrix form of integro-differential equation for this quantity is derived, and its solution can be expressed as a linear combination of particular solutions of the corresponding homogeneous integro-differential equations. By using the divided differences technique and nonnegative real part roots of Lundberg's equation, the explicit Laplace transforms of particular solutions are obtained. Specially, we can deduce closed-form results as long as the individual claim size is rationally distributed. We also give a concise matrix expression for the expected discounted dividend payments under a barrier dividend strategy. Finally, we give some examples to present our main results.展开更多
This article deals with the ruin probability in a Sparre Andersen risk process with the inter-claim times being Erlang distributed in the framework of piecewise deterministic Markov process (PDMP). We construct an e...This article deals with the ruin probability in a Sparre Andersen risk process with the inter-claim times being Erlang distributed in the framework of piecewise deterministic Markov process (PDMP). We construct an exponential martingale by virtue of the extended generator of the PDMP to change the measure. Some results are derived for the ruin probabilities, such as the general expressions for ruin probability, Lundberg bounds, CramerLundberg approximations, and finite-horizon ruin probability.展开更多
We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iterati...We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iteration mothed can be used to compute the values of expected discounted dividends until ruin and the new penalty function. Applying the new function and the recursion method proposed in Section 5, we obtain the arbitrary moments of discounted dividend payments until ruin.展开更多
In this paper, we introduce a reinsurance strategy into the Sparre Andersen risk model with a horizon dividend barrier, which is named dividend-reinsurance strategy. It is shown that the value function of the new stra...In this paper, we introduce a reinsurance strategy into the Sparre Andersen risk model with a horizon dividend barrier, which is named dividend-reinsurance strategy. It is shown that the value function of the new strategy far exceeds that of the optimal barrier strategy (even that of the optimal dividend strategy). Some results on the advantages of the new strategy are obtained, and the methods for computing the value functions are provided. Numerical illustrations for Erlang (2) and compound Poisson risk models are also given.展开更多
基金Supported by the National Natural Science Foundation of China(No.10571051)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20040542006).
文摘We consider the Sparre Andersen model modified by the inclusion of interest on the surplus. Approximation for the ultimate ruin probability is derived by rounding. And upper bound and lower bound are also derived by rounding-down and rounding-up respectively. According to the upper bound and lower bound, we can easily obtain the error estimation of the approximation. Applications of the results to the compound Poisson model are given.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10901164 and 11071037), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and Natural Science Foundation of CQ CSTC (Grant No. 2009BB8221)
文摘In this paper, we consider the distribution of the maximum surplus before ruin in a generalized Erlang(n) risk process (i.e., convolution of n exponential distributions with possibly different parameters) perturbed by diffusion. It is shown that the maximum surplus distribution before ruin satisfies the integro-differential equation with certain boundary conditions. Explicit expressions are obtained when claims amounts are rationally distributed. Finally, the surplus distribution at the time of ruin and the surplus distribution immediately before ruin are presented.
基金Supported by National Basic Research Program of China (973 Program) 2007CB814905, National Natural Science Foundation of China (Grant No. 10871102), and the Keygrant Project of Chinese Ministry of Education (Grant No. 309009)
文摘In this paper, we investigate a Sparre Andersen risk model perturbed by diffusion with phase-type inter-claim times. We mainly study the distribution of maximum surplus prior to ruin. A matrix form of integro-differential equation for this quantity is derived, and its solution can be expressed as a linear combination of particular solutions of the corresponding homogeneous integro-differential equations. By using the divided differences technique and nonnegative real part roots of Lundberg's equation, the explicit Laplace transforms of particular solutions are obtained. Specially, we can deduce closed-form results as long as the individual claim size is rationally distributed. We also give a concise matrix expression for the expected discounted dividend payments under a barrier dividend strategy. Finally, we give some examples to present our main results.
文摘This article deals with the ruin probability in a Sparre Andersen risk process with the inter-claim times being Erlang distributed in the framework of piecewise deterministic Markov process (PDMP). We construct an exponential martingale by virtue of the extended generator of the PDMP to change the measure. Some results are derived for the ruin probabilities, such as the general expressions for ruin probability, Lundberg bounds, CramerLundberg approximations, and finite-horizon ruin probability.
文摘We consider the Sparre Andersen risk process in the presence of a constant dividend barrier, and propose a new expected discounted penalty function which is different from that of Gerber and Shiu. We find that iteration mothed can be used to compute the values of expected discounted dividends until ruin and the new penalty function. Applying the new function and the recursion method proposed in Section 5, we obtain the arbitrary moments of discounted dividend payments until ruin.
基金Supported by the Natural Science Foundation of Tianjin(08JCYBJC02200)the Natural Science Foundation of China(10871102)National Basic Research Program of China(973 Program) (2007CB814905)
基金Supported by National Natural Science Foundation of China(Grant No.10871064)Scientific Research Funds of Hu'nan Provincial Education Department(08C883)Hu'nan Provincial Science and Technology Department(2009FJ3141)
文摘In this paper, we introduce a reinsurance strategy into the Sparre Andersen risk model with a horizon dividend barrier, which is named dividend-reinsurance strategy. It is shown that the value function of the new strategy far exceeds that of the optimal barrier strategy (even that of the optimal dividend strategy). Some results on the advantages of the new strategy are obtained, and the methods for computing the value functions are provided. Numerical illustrations for Erlang (2) and compound Poisson risk models are also given.