Proteolytic degradation of amyloid-β (Aβ) aggregates and clearance of Aβ- induced reactive oxygen species (ROS) have received significant attention for the treatment of Alzheimer's disease (AD). However, it ...Proteolytic degradation of amyloid-β (Aβ) aggregates and clearance of Aβ- induced reactive oxygen species (ROS) have received significant attention for the treatment of Alzheimer's disease (AD). However, it is difficult, and often unfeasible, to directly upregulate or transport intraceUular native enzymes. More importantly, penetration of the blood-brain barrier (BBB) has presented a major impediment. Herein, we report on the rational design of a polyoxometalate- based nanozyme with both protease-like activity for depleting A~ aggregates, and superoxide dismutase (SOD)-like activity for scavenging A[3-mediated ROS. Furthermore, this nanozyme acts as a metal chelator to remove Cu from Cu-induced Aβ oligomers. More intriguingly, the nanozyme can cross the BBB and exhibits low toxicity. This work provides new insights into the design and synthesis of inorganic nanozymes as multifunctional therapeutic agents in the treatment of AD.展开更多
基金Financial support was provided by the National Basic Research Program of China (973 Project) (Nos. 2011CB936004 and 2012CB720602) and the National Natural Science Foundation of China (Nos. 21210002, 21431007, 21402183, and 21533008).
文摘Proteolytic degradation of amyloid-β (Aβ) aggregates and clearance of Aβ- induced reactive oxygen species (ROS) have received significant attention for the treatment of Alzheimer's disease (AD). However, it is difficult, and often unfeasible, to directly upregulate or transport intraceUular native enzymes. More importantly, penetration of the blood-brain barrier (BBB) has presented a major impediment. Herein, we report on the rational design of a polyoxometalate- based nanozyme with both protease-like activity for depleting A~ aggregates, and superoxide dismutase (SOD)-like activity for scavenging A[3-mediated ROS. Furthermore, this nanozyme acts as a metal chelator to remove Cu from Cu-induced Aβ oligomers. More intriguingly, the nanozyme can cross the BBB and exhibits low toxicity. This work provides new insights into the design and synthesis of inorganic nanozymes as multifunctional therapeutic agents in the treatment of AD.