With the development of Ethernet systems and the growing capacity of modem silicon technology, embedded communication networks are playing an increasingly important role in embedded and safety critical systems. Hardwa...With the development of Ethernet systems and the growing capacity of modem silicon technology, embedded communication networks are playing an increasingly important role in embedded and safety critical systems. Hardware/software co-design is a methodology for solving design problems in processor based embedded systems. In this work, we implemented a new 1-cycle pipeline microprocessor and a fast Ethemet transceiver and established a low cost, high performance embedded network controller, and designed a TCP/IP stack to access the Intemet. We discussed the hardware/software architecture in the forepart, and then the whole system-on-a-chip on Altera Stratix EP1S25F780C6 device. Using the FPGA environment and SmartBit tester, we tested the system's throughput. Our simulation results showed that the maximum throughput of Ethemet packets is up to 7 Mbps, that of UDP packets is up to 5.8 Mbps, and that of TCP packets is up to 3.4 Mbps, which showed that this embedded system can easily transmit basic voice and video signals through Ethemet, and that using only one chip can realize that many electronic devices access to the Intemet directly and get high performance.展开更多
A novel speed control design of 4WD electric vehicle (EV) to improve the comportment and stability under different road constraints condition is presented in this paper. The control circuit using intelligent adaptive ...A novel speed control design of 4WD electric vehicle (EV) to improve the comportment and stability under different road constraints condition is presented in this paper. The control circuit using intelligent adaptive fuzzy PI controller is proposed. Parameters which guide the functioning of PI controller are dynamically adjusted with the assistance of fuzzy control. The 4WD is powered by four motors of 15 kilowatts each one, delivering a 384 N.m total torque. Its high torque (338 N.m) is instantly available to ensure responsive acceleration performance in built-up areas. The electric drive canister of tow directing wheels and tow rear propulsion wheels equipped with tow induction motors thanks to their light weight simplicity and their height performance. Acceleration and steering are ensure by electronic differential, the latter control separately deriving wheels to turn at any curve. Electric vehicle are submitted different constraint of road using direct torque control. Electric vehicle are simulated in MATLAB SIMULINK. The simulation results have proved that the intelligent fuzzy PI control method decreases the transient oscillations and assure efficiency comportment in all topologies road constraints, straight, curved road, descent.展开更多
文摘With the development of Ethernet systems and the growing capacity of modem silicon technology, embedded communication networks are playing an increasingly important role in embedded and safety critical systems. Hardware/software co-design is a methodology for solving design problems in processor based embedded systems. In this work, we implemented a new 1-cycle pipeline microprocessor and a fast Ethemet transceiver and established a low cost, high performance embedded network controller, and designed a TCP/IP stack to access the Intemet. We discussed the hardware/software architecture in the forepart, and then the whole system-on-a-chip on Altera Stratix EP1S25F780C6 device. Using the FPGA environment and SmartBit tester, we tested the system's throughput. Our simulation results showed that the maximum throughput of Ethemet packets is up to 7 Mbps, that of UDP packets is up to 5.8 Mbps, and that of TCP packets is up to 3.4 Mbps, which showed that this embedded system can easily transmit basic voice and video signals through Ethemet, and that using only one chip can realize that many electronic devices access to the Intemet directly and get high performance.
文摘A novel speed control design of 4WD electric vehicle (EV) to improve the comportment and stability under different road constraints condition is presented in this paper. The control circuit using intelligent adaptive fuzzy PI controller is proposed. Parameters which guide the functioning of PI controller are dynamically adjusted with the assistance of fuzzy control. The 4WD is powered by four motors of 15 kilowatts each one, delivering a 384 N.m total torque. Its high torque (338 N.m) is instantly available to ensure responsive acceleration performance in built-up areas. The electric drive canister of tow directing wheels and tow rear propulsion wheels equipped with tow induction motors thanks to their light weight simplicity and their height performance. Acceleration and steering are ensure by electronic differential, the latter control separately deriving wheels to turn at any curve. Electric vehicle are submitted different constraint of road using direct torque control. Electric vehicle are simulated in MATLAB SIMULINK. The simulation results have proved that the intelligent fuzzy PI control method decreases the transient oscillations and assure efficiency comportment in all topologies road constraints, straight, curved road, descent.