Climatic change has significant impacts on snow cover in mid-latitude mountainous re- gions, in the meantime, spatial and temporal changes of snow cover and snowmelt runoffs are con- sidered as sensitive indicators fo...Climatic change has significant impacts on snow cover in mid-latitude mountainous re- gions, in the meantime, spatial and temporal changes of snow cover and snowmelt runoffs are con- sidered as sensitive indicators for climatic change. In this study, the upper Heihe Watershed in the Qilian Mountains was selected as a typical area affected by snow cover and snowmelt runoffs in northwestern China. The changes in air temperatures, precipitation, snowfall and spring snowmelt runoffs were analyzed for the period from 1956 to 2001. The results indicate that climatic warming was apparent, particularly in January and February, but precipitation just fluctuated without a clear trend. The possible changes of snowmelt runoffs in the upper Heihe watershed in response to a warming of 4℃ were simulated using Snowmelt Runoff Model (SRM) based on the degree-day factor algorithm. The results of the simulation indicate that a forward shifting of snow melting season, an increase in water flows in earlier melting season, and a decline in flows in later melting season would occur under a 4℃ warming scenario.展开更多
Water resources in the arid land of Northwest China mainly derive from snow and glacier melt water in mountainous areas. So the study on onset, cessation, length, tempera- ture and precipitation of snowmelt period is ...Water resources in the arid land of Northwest China mainly derive from snow and glacier melt water in mountainous areas. So the study on onset, cessation, length, tempera- ture and precipitation of snowmelt period is of great significance for allocating limited water resources reasonably and taking scientific water resources management measures. Using daily mean temperature and precipitation from 8 mountainous weather stations over the pe- riod 1960-2010 in the arid land of Northwest China, this paper analyzes climate change of snowmelt period and its spatial variations and explores the sensitivity of runoff to length, temperature and precipitation of snowmelt period. The results show that mean onset of snowmelt period has shifted 15.33 days earlier while mean ending date has moved 9.19 days later. Onset of snowmelt period in southern Tianshan Mountains moved 20.01 days earlier while that in northern Qilian Mountains moved only 10.16 days earlier. Mean precipitation and air temperature increased by 47.3 mm and 0.857~C in the mountainous areas of Northwest China, respectively. The precipitation of snowmelt period increased the fastest, which is ob- served in southern Tianshan Mountains, up to 65 mm, and the precipitation and temperature in northern Kunlun Mountains increased the slowest, an increase of 25 mm and 0.617~C, respectively, while the temperature in northern Qilian Mountains increased the fastest, in- creasing by 1.05~C. The annual runoff is also sensitive to the variations of precipitation and temperature of snowmelt period, because variation of precipitation induces annual runoff change by 7.69% while change of snowmelt period temperature results in annual runoff change by 14.15%.展开更多
Spring snowmelt peak flow (SSPF) can cause serious damage. Precipitation as rainfall directly contributes to the SSPF and influences the characteristics of the SSPF, while temperature indirectly impacts the SSPF by ...Spring snowmelt peak flow (SSPF) can cause serious damage. Precipitation as rainfall directly contributes to the SSPF and influences the characteristics of the SSPF, while temperature indirectly impacts the SSPF by shaping snowmelt rate and determining the soil frozen state which partitions snowmelt water into surface runoff and soil infiltration water in spring. It is necessary to identify the important and significant paths of climatic factors influencing the SSPF and provide estimates of the magnitude and significance of hypothesized causal connections between climatic factors and the SSPF. This study used path analysis with a selection of five factors - the antecedent precipitation index (API), spring precipitation (SP), winter precipitation as snowfall (WS), 〈0℃ temperature accumulation in winter ([ATNI), and average 〉0℃temperature accumulation in spring (AT) - to analyze their influences on the SSPF in the Kaidu River in Xinjiang, China. The results show that {ATN}, AT and WS have a significant correlation with the SSPF, while API and SP do not show a significant correlation. AT and WS directly influence the SSPF, while as the influence of[ATN] on SSPF is indirect through WS and AT. The indirect influence of [ATN[ on SSPF through WS accounts for 69% of the total influence of [ATN] on SSPF. Compared to the multiple linear regression method, path analysis provides additional valuable information, including influencing paths from independent variables to the dependent variable as well as direct and indirect impacts of external variables on the internal variable. This information can help improve the description of snow melt and spring runoff in hydrologic models as well as the planning and management of water resources.展开更多
Some analytical results of the measured runoff during 1950s to 1980s at outlet hydrological stations of 33 main rivers and climatic data collected from 84 meteorological stations in Xinjiang Autonomous Region are pres...Some analytical results of the measured runoff during 1950s to 1980s at outlet hydrological stations of 33 main rivers and climatic data collected from 84 meteorological stations in Xinjiang Autonomous Region are presented.Comparison of hydrological and climatic parameters before and after 1980 shows that the spring runoff for most rivers after 1980s increased obviously at a rate of about 10%, though the spring air temperature did not rise very much. Especially,an increment by 20% for alpine runoff is observed during May when intensive snow melting occurred in the alpine region. To the contrary, the runoff in June decreased about 5%. When the summer or annual runoff is taken into account,direct relationship can be found between the change in runoff and the ratio of glacier-coverage, except the runoff in August when the glacier melting is strong, indicating that climatic warming has an obvious effect on the contribution of glacier melting to the runoff increase.展开更多
In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT...In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the Tian Shan Mountains, Xinjiang,China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example(as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency(NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. Thestructure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired.展开更多
The snowmelt runoff model (SRM) has been widely used in simulation and forecast of streamflow in snow-dominated mountainous basins around the world. This paper presents an overall review of worldwide applications of...The snowmelt runoff model (SRM) has been widely used in simulation and forecast of streamflow in snow-dominated mountainous basins around the world. This paper presents an overall review of worldwide applications of SRM in mountainous watersheds, particularly jn data-sparse watersheds of northwestern China. Issues related to proper selection of input climate variables and parameters, and determination of the snow cover area (SCA)using remote sensing data in snowmelt runoff modeling are discussed through extensive review of literature. Preliminary applications of SRM in northwestern China have shown that the model accuracies are relatively acceptable although most of the watersheds lack measured hydro-meteorological data. Future research could explore the feasibility of modeling snowmelt runoff in data-sparse mountainous watersheds in northwestern China by utilizing snow and glacier cover remote sensing data, geographic information system (GIS) tools, field measurements, and innovative ways of model parameterization.展开更多
文摘Climatic change has significant impacts on snow cover in mid-latitude mountainous re- gions, in the meantime, spatial and temporal changes of snow cover and snowmelt runoffs are con- sidered as sensitive indicators for climatic change. In this study, the upper Heihe Watershed in the Qilian Mountains was selected as a typical area affected by snow cover and snowmelt runoffs in northwestern China. The changes in air temperatures, precipitation, snowfall and spring snowmelt runoffs were analyzed for the period from 1956 to 2001. The results indicate that climatic warming was apparent, particularly in January and February, but precipitation just fluctuated without a clear trend. The possible changes of snowmelt runoffs in the upper Heihe watershed in response to a warming of 4℃ were simulated using Snowmelt Runoff Model (SRM) based on the degree-day factor algorithm. The results of the simulation indicate that a forward shifting of snow melting season, an increase in water flows in earlier melting season, and a decline in flows in later melting season would occur under a 4℃ warming scenario.
基金National Basic Research Program of China (973 Program), No.2010CB951003National Natural Science Foundation of China, No.40901105Knowledge Innovation Program of the CAS, No.KZCX2-YW-Q10-3-4
文摘Water resources in the arid land of Northwest China mainly derive from snow and glacier melt water in mountainous areas. So the study on onset, cessation, length, tempera- ture and precipitation of snowmelt period is of great significance for allocating limited water resources reasonably and taking scientific water resources management measures. Using daily mean temperature and precipitation from 8 mountainous weather stations over the pe- riod 1960-2010 in the arid land of Northwest China, this paper analyzes climate change of snowmelt period and its spatial variations and explores the sensitivity of runoff to length, temperature and precipitation of snowmelt period. The results show that mean onset of snowmelt period has shifted 15.33 days earlier while mean ending date has moved 9.19 days later. Onset of snowmelt period in southern Tianshan Mountains moved 20.01 days earlier while that in northern Qilian Mountains moved only 10.16 days earlier. Mean precipitation and air temperature increased by 47.3 mm and 0.857~C in the mountainous areas of Northwest China, respectively. The precipitation of snowmelt period increased the fastest, which is ob- served in southern Tianshan Mountains, up to 65 mm, and the precipitation and temperature in northern Kunlun Mountains increased the slowest, an increase of 25 mm and 0.617~C, respectively, while the temperature in northern Qilian Mountains increased the fastest, in- creasing by 1.05~C. The annual runoff is also sensitive to the variations of precipitation and temperature of snowmelt period, because variation of precipitation induces annual runoff change by 7.69% while change of snowmelt period temperature results in annual runoff change by 14.15%.
基金financially supported by the Project of State Key Basic R & D Program of China (973 Program, Grant No. 2010CB951002)the key deployment project of Chinese Academy of Sciences (Grant No. KZZD-EW-12-2)Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No. 2011T2Z40)
文摘Spring snowmelt peak flow (SSPF) can cause serious damage. Precipitation as rainfall directly contributes to the SSPF and influences the characteristics of the SSPF, while temperature indirectly impacts the SSPF by shaping snowmelt rate and determining the soil frozen state which partitions snowmelt water into surface runoff and soil infiltration water in spring. It is necessary to identify the important and significant paths of climatic factors influencing the SSPF and provide estimates of the magnitude and significance of hypothesized causal connections between climatic factors and the SSPF. This study used path analysis with a selection of five factors - the antecedent precipitation index (API), spring precipitation (SP), winter precipitation as snowfall (WS), 〈0℃ temperature accumulation in winter ([ATNI), and average 〉0℃temperature accumulation in spring (AT) - to analyze their influences on the SSPF in the Kaidu River in Xinjiang, China. The results show that {ATN}, AT and WS have a significant correlation with the SSPF, while API and SP do not show a significant correlation. AT and WS directly influence the SSPF, while as the influence of[ATN] on SSPF is indirect through WS and AT. The indirect influence of [ATN[ on SSPF through WS accounts for 69% of the total influence of [ATN] on SSPF. Compared to the multiple linear regression method, path analysis provides additional valuable information, including influencing paths from independent variables to the dependent variable as well as direct and indirect impacts of external variables on the internal variable. This information can help improve the description of snow melt and spring runoff in hydrologic models as well as the planning and management of water resources.
基金Project supported by the Ministry of Science and Technology of China (Grant No.96-912-01-02) and the Chinese Academy of Sciences (Grant No. KZ-952-S1-216).
文摘Some analytical results of the measured runoff during 1950s to 1980s at outlet hydrological stations of 33 main rivers and climatic data collected from 84 meteorological stations in Xinjiang Autonomous Region are presented.Comparison of hydrological and climatic parameters before and after 1980 shows that the spring runoff for most rivers after 1980s increased obviously at a rate of about 10%, though the spring air temperature did not rise very much. Especially,an increment by 20% for alpine runoff is observed during May when intensive snow melting occurred in the alpine region. To the contrary, the runoff in June decreased about 5%. When the summer or annual runoff is taken into account,direct relationship can be found between the change in runoff and the ratio of glacier-coverage, except the runoff in August when the glacier melting is strong, indicating that climatic warming has an obvious effect on the contribution of glacier melting to the runoff increase.
基金financially supported by the Ministry of Water Resources (MWR) public sector research and special funds-the most stringent in arid zone water resources management key technologies (201301103)National Nature Science Foundation of China (NSFC) under Grant No. 41130641, 41201025+1 种基金Ministry of Education Key Laboratory of Eco-Oasis Open Topic-Moisture change in Central Asia and its influence on precipitation in Xinjang Province (XJDX0201-2013-07)the Tianshan Scholar Start-up Fund provided by Xinjiang University
文摘In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the Tian Shan Mountains, Xinjiang,China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example(as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency(NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. Thestructure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired.
基金supported by the National Natural Science Foundation of China(Grant No51069017)the Special Fund for Public Welfare Industry of Ministry of Water Resources of China(Grant No201001065)+1 种基金the Open-End Fund of Key Laboratory of Oasis Ecology,Xinjiang University(Grant No XJDX0206-2010-03)the Open-End Fund of the China Institute of Water Resources and Hydropower Research(Grant NoIWHR-SKL-201104)
文摘The snowmelt runoff model (SRM) has been widely used in simulation and forecast of streamflow in snow-dominated mountainous basins around the world. This paper presents an overall review of worldwide applications of SRM in mountainous watersheds, particularly jn data-sparse watersheds of northwestern China. Issues related to proper selection of input climate variables and parameters, and determination of the snow cover area (SCA)using remote sensing data in snowmelt runoff modeling are discussed through extensive review of literature. Preliminary applications of SRM in northwestern China have shown that the model accuracies are relatively acceptable although most of the watersheds lack measured hydro-meteorological data. Future research could explore the feasibility of modeling snowmelt runoff in data-sparse mountainous watersheds in northwestern China by utilizing snow and glacier cover remote sensing data, geographic information system (GIS) tools, field measurements, and innovative ways of model parameterization.