Evolution of the electrical resistivity of Sn-40wt%Bi melt with time under different overheating temperatures during isothermal experiments has been studied, and the relationship between different melt state, solidifi...Evolution of the electrical resistivity of Sn-40wt%Bi melt with time under different overheating temperatures during isothermal experiments has been studied, and the relationship between different melt state, solidification behavior and solidified structure has also been investigated. The results show that the melt structure transition revealed by the abnormal change of resistivity would take place within a certain holding time just when the holding temperature is above a certain critical, and that the higher the temperature above the critical, the shorter the "incubation period" of the melt structure transition, and the faster the transition speed. The results of solidification experiments suggest that the melt structure transition caused by different holding time at the same temperature can lead to a higher so-lidification undercooling degree, finer grain size and change of microscopic pattern. Further exploration indicates that the solidification undercooling degree can come to a head when the melt is held at the specific temperature for a given time. The functionary mechanism of the phenomena above is also discussed briefly.展开更多
Interfacial reaction, tensile strength and creep resistance of Sn-58Bi-x Zn(x=0, 0.7, mass fraction, %) solder samples during liquid-state aging were investigated. The coarsening of Bi and the growth of Cu-Sn intermet...Interfacial reaction, tensile strength and creep resistance of Sn-58Bi-x Zn(x=0, 0.7, mass fraction, %) solder samples during liquid-state aging were investigated. The coarsening of Bi and the growth of Cu-Sn intermetallic compounds(IMCs) in Sn-58Bi-0.7Zn solder sample were both effectively suppressed. With the addition of 0.7% Zn, ultimate tensile strengths(UTSs) of the Sn-58 Bi solder slabs were respectively increased by 6.05% and 5.50% after reflow soldering and liquid-state aging, and those of the Cu/Sn-58Bi/Cu solder joints were also increased by 21.51% and 29.27%, respectively. The increase in strengthening effect of Cu/Sn-58Bi-x Zn/Cu solder joints could be attributed to the fracture surface which was changed from the Cu/IMC interface to the IMC/solder interface due to the finer Bi grain. Nanoindentation results revealed that the creep behavior of Sn-58Bi-0.7Zn solder was significantly improved compared with that of the eutectic Sn-58 Bi solder after reflow soldering and liquid-state aging.展开更多
The effects of forced flows at different velocities on microstructure and solute distribution during the directional solidification of Sn-10 wt% Bi alloys under a simultaneous imposition of a transverse static magneti...The effects of forced flows at different velocities on microstructure and solute distribution during the directional solidification of Sn-10 wt% Bi alloys under a simultaneous imposition of a transverse static magnetic field(TSMF) and an external direct current(DC) have been investigated experimentally and numerically. The experimental results show that the solid-liquid interface will gradually become sloping with the increase of the forced flow velocity when the thermoelectric magnetic convection(TEMC)dominates the forced flow at solidification front. However, the interface will gradually become planar as the flow velocity further increases when the electromagnetic convection(EMC) dominates the forced flow. Moreover, when the flow velocity gradually increases, the primary dendrite spacing decreases from384 to 105 μm accordingly. The simulation results show that the solute distribution at the two sides of the sample can be significantly changed by the forced flow at solidification front. The rejected solute will be unidirectionally transported to one side of the sample along the TEMC(a low-velocity forced flow),thereby causing the formation of a sloping interface. However, the rejected solute will be returned back along the EMC(a higher-velocity force flow), which results in a planar interface. Furthermore, the solute content at the two sides of the sample under the forced flows at different velocities was measured. The results are in good agreement with the simulation results, which shows that the solute content difference between the two sides of the sample reaches the maximum when a 0.5 T TSMF is applied, while the solute content difference decreases to zero with a simultaneous application of a 0.5 T TSMF and a 1.6 × 10~5 A/m^2 external DC.展开更多
Effects of Zn, Zn-Al and Zn-P additions on melting points, microstructures, tensile properties, and oxidation behaviors of Sn-40 Bi lead-free solder were investigated. The experimental results show that the addition o...Effects of Zn, Zn-Al and Zn-P additions on melting points, microstructures, tensile properties, and oxidation behaviors of Sn-40 Bi lead-free solder were investigated. The experimental results show that the addition of these three types of elements can refine the microstructures and improve the ultimate tensile strength(UTS) of solder alloys. The fractographic analysis illustrates that ductile fracture is the dominant failure mode in tensile tests of Sn-40Bi-2Zn(SBZ)and Sn-40Bi-2Zn-0.005Al(SBZA) specimens, while brittle fracture is the controlled manner in Sn-40Bi-2Zn-0.005P(SBZP) and Sn-58 Bi solders. XPS analysis indicates that trace amounts of both Al and P additives in solder can improve the antioxidant capacity, whereas only the additive of Al in solder can reduce the thickness of oxidation film.展开更多
The analytical electron microscopy has been used to characterize the morphology,structure and composition of the nanostructured material of Sn- Bi alloy prepared by a modified electrohydrodynamic technique. The electr...The analytical electron microscopy has been used to characterize the morphology,structure and composition of the nanostructured material of Sn- Bi alloy prepared by a modified electrohydrodynamic technique. The electron diffraction pattern and the corresponding contrast image for the discrete particles with a diameter smaller than 4 nm have been obtained.It is shown that the nanocrystalline Sn-Bi alloy particles comprise a single crystal of Bi-containing β-Sn solid solution or of Sn-containing Bi solid solution. A direct preparation procedure of the samples during the electrohydrodynamic rapid solidification process has been developed for electron microscopic observation.展开更多
The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. ...The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. A Pb-riched region with porosity is formed in region of soldering fillet with electroless Sn/Bi. Both the electroless Sn/Bi layer and Pb-riched layer become thicker, which are the reasons why the shear strength of the solder joint with electroless Sn/Bi on aluminum surface is lower than that of electroless Cu, and the higher the thickness of the electroless Sn/Bi layer is, the lower the shear strength of solder joint is.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 50571033, 50371024)the Natural Science Foundation of Anhui Province(Grant No.070414178)
文摘Evolution of the electrical resistivity of Sn-40wt%Bi melt with time under different overheating temperatures during isothermal experiments has been studied, and the relationship between different melt state, solidification behavior and solidified structure has also been investigated. The results show that the melt structure transition revealed by the abnormal change of resistivity would take place within a certain holding time just when the holding temperature is above a certain critical, and that the higher the temperature above the critical, the shorter the "incubation period" of the melt structure transition, and the faster the transition speed. The results of solidification experiments suggest that the melt structure transition caused by different holding time at the same temperature can lead to a higher so-lidification undercooling degree, finer grain size and change of microscopic pattern. Further exploration indicates that the solidification undercooling degree can come to a head when the melt is held at the specific temperature for a given time. The functionary mechanism of the phenomena above is also discussed briefly.
基金Project(51074112)supported by the National Natural Science Foundation of China
文摘Interfacial reaction, tensile strength and creep resistance of Sn-58Bi-x Zn(x=0, 0.7, mass fraction, %) solder samples during liquid-state aging were investigated. The coarsening of Bi and the growth of Cu-Sn intermetallic compounds(IMCs) in Sn-58Bi-0.7Zn solder sample were both effectively suppressed. With the addition of 0.7% Zn, ultimate tensile strengths(UTSs) of the Sn-58 Bi solder slabs were respectively increased by 6.05% and 5.50% after reflow soldering and liquid-state aging, and those of the Cu/Sn-58Bi/Cu solder joints were also increased by 21.51% and 29.27%, respectively. The increase in strengthening effect of Cu/Sn-58Bi-x Zn/Cu solder joints could be attributed to the fracture surface which was changed from the Cu/IMC interface to the IMC/solder interface due to the finer Bi grain. Nanoindentation results revealed that the creep behavior of Sn-58Bi-0.7Zn solder was significantly improved compared with that of the eutectic Sn-58 Bi solder after reflow soldering and liquid-state aging.
基金financially supported by the National Key Research and Development Program of China (No.2016YFB0301401)the National Natural Science Foundation of China (No.U1732276)+1 种基金the Science and Technology Commission of Shanghai Municipality (Key Project Nos.13JC1402500 and 15520711000)the Independent Research and Development Project of State Key of Advanced Special Steel,Shanghai University (Nos.SKLASS2015-Z021 and SELF-2014-02)
文摘The effects of forced flows at different velocities on microstructure and solute distribution during the directional solidification of Sn-10 wt% Bi alloys under a simultaneous imposition of a transverse static magnetic field(TSMF) and an external direct current(DC) have been investigated experimentally and numerically. The experimental results show that the solid-liquid interface will gradually become sloping with the increase of the forced flow velocity when the thermoelectric magnetic convection(TEMC)dominates the forced flow at solidification front. However, the interface will gradually become planar as the flow velocity further increases when the electromagnetic convection(EMC) dominates the forced flow. Moreover, when the flow velocity gradually increases, the primary dendrite spacing decreases from384 to 105 μm accordingly. The simulation results show that the solute distribution at the two sides of the sample can be significantly changed by the forced flow at solidification front. The rejected solute will be unidirectionally transported to one side of the sample along the TEMC(a low-velocity forced flow),thereby causing the formation of a sloping interface. However, the rejected solute will be returned back along the EMC(a higher-velocity force flow), which results in a planar interface. Furthermore, the solute content at the two sides of the sample under the forced flows at different velocities was measured. The results are in good agreement with the simulation results, which shows that the solute content difference between the two sides of the sample reaches the maximum when a 0.5 T TSMF is applied, while the solute content difference decreases to zero with a simultaneous application of a 0.5 T TSMF and a 1.6 × 10~5 A/m^2 external DC.
基金financially supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province (Nos. 11KJB460003 and 12KJB460003)Jiangsu Planning Project of Science and Technology (No. SBK201241936)National Natural Science Foundation of China (No. 51201072)
文摘Effects of Zn, Zn-Al and Zn-P additions on melting points, microstructures, tensile properties, and oxidation behaviors of Sn-40 Bi lead-free solder were investigated. The experimental results show that the addition of these three types of elements can refine the microstructures and improve the ultimate tensile strength(UTS) of solder alloys. The fractographic analysis illustrates that ductile fracture is the dominant failure mode in tensile tests of Sn-40Bi-2Zn(SBZ)and Sn-40Bi-2Zn-0.005Al(SBZA) specimens, while brittle fracture is the controlled manner in Sn-40Bi-2Zn-0.005P(SBZP) and Sn-58 Bi solders. XPS analysis indicates that trace amounts of both Al and P additives in solder can improve the antioxidant capacity, whereas only the additive of Al in solder can reduce the thickness of oxidation film.
文摘The analytical electron microscopy has been used to characterize the morphology,structure and composition of the nanostructured material of Sn- Bi alloy prepared by a modified electrohydrodynamic technique. The electron diffraction pattern and the corresponding contrast image for the discrete particles with a diameter smaller than 4 nm have been obtained.It is shown that the nanocrystalline Sn-Bi alloy particles comprise a single crystal of Bi-containing β-Sn solid solution or of Sn-containing Bi solid solution. A direct preparation procedure of the samples during the electrohydrodynamic rapid solidification process has been developed for electron microscopic observation.
文摘The solder joint strength of Pb/Sn soldering aluminum with electroless layer Sn/Bi and Cu was studied. The results show that the joint shear strength of electroless Sn/Bi on aluminum surface is lower than that of Cu. A Pb-riched region with porosity is formed in region of soldering fillet with electroless Sn/Bi. Both the electroless Sn/Bi layer and Pb-riched layer become thicker, which are the reasons why the shear strength of the solder joint with electroless Sn/Bi on aluminum surface is lower than that of electroless Cu, and the higher the thickness of the electroless Sn/Bi layer is, the lower the shear strength of solder joint is.