As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of...As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of its Sm-Nd geochronology and Nd isotopic characteristics.Since the retention of Sm-Nd systematics within scheelite is presently unconstrained,equivocal interpretations for isotopic data resulting from this method have occurred quite often in previous studies that apply these isotopic data.In order to better elucidate the closure of Sm-Nd in scheelite,the kinetics of Sm and Nd within this mineral lattice were investigated through calculation of diffusion constants presented herein.The following Arrhenius relations were obtained:D_(Nd)=4.00exp(-438 kJ·mol^(–1)/RT)cm^(2)/s D_(Sm)=1.85exp(-427 kJ·mol^(–1)/RT)cm^(2)/s showing diffusion rate of Nd is near identical to Sm in scheelite when at the same temperature.However,compared to other rare earth elements(REEs),which have markedly different atomic radii to either Nd or Sm,these are shown to exhibit a great variation in diffusivities.The observed trends in our data are in excellent agreement with the diffusion characteristics of REEs in other tetragonal ABO4 minerals,indicating that ionic radius is a key constraint to the diffusivity of REEs in the various crystal lattices.With this in mind,the same substitution mechanism and a very slight discrepancy in radii will allow us to infer that significant Sm/Nd diffusional fractionation in scheelite is unlikely to occur during most geological processes.Based upon the diffusion data determined herein,Sm and Nd closure temperatures and retention times in scheelite are discussed in terms of diffusion dynamics.Those results suggest that closure temperatures for Sm-Nd within this mineral are relatively high in contrast to the temperature ranges of ore-formation responsible for scheelite-related deposits,and any later thermal environments.It is likely,therefore,that relevant isotopic information could be easily展开更多
This study focuses on a virtual synchronous machine(VSM) based on voltage source converters to mimic the behavior of synchronous machines(SMs) and improve the damping ratio of the power system. The VSM model is simpli...This study focuses on a virtual synchronous machine(VSM) based on voltage source converters to mimic the behavior of synchronous machines(SMs) and improve the damping ratio of the power system. The VSM model is simplified according to some assumptions(neglecting the speed variation and the stator transients) to allow for the possibility of dealing with low-frequency oscillation in large-scale systems with many VSMs. Furthermore, a virtual power system stabilizer(VPSS) structure is proposed and tuned using a method based on a linearized power system dynamic model. The linear and nonlinear analyses examine the stability of two modified versions of a 16-machine power system in which, in the first case, partial classical machines are replaced by VSMs, and in the second case, all SMs are replaced by VSMs. The simulation results of the case studies validate the efficiency of the proposed control strategy.展开更多
Iron formations are valuable archives of sedimentary conditions and post-depositional events.However,geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism ...Iron formations are valuable archives of sedimentary conditions and post-depositional events.However,geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism and deformation,hampering their use as records of regional geological events.This work focuses on strongly reworked magnetite-quartz-rich rocks from the São Josédo Campestre Massif,one of the oldest fragments of preserved crust in South America.The genetic classification of these magnetite-quartz-rich rocks is not straightforward because primary assemblages and textures were variably modified by granulite facies metamorphism during a regional Paleoproterozoic migmatization event.To address genetic ambiguities,we analyzed their magnetite and pyroxene chemistry,wholerock geochemistry,and Sm-Nd isotopes.Magnetite chemistry indicates that pyroxene-poor iron formations(Type B)are low in trace elements such as Ti,Al,V,and Mn,suggesting a chemical similarity to iron formations elsewhere.In contrast,magnetites from pyroxene-enriched Type A iron formations are rich in trace elements and more akin to magnetite crystallized from higher temperature systems,such as skarn and IOCG.The^(147)Sm/^(144)Nd of these rocks show substantial variation even at the outcrop scale,indicating a locally-controlled,highly heterogeneous mixture of Archean,Paleoproterozoic,and Neoproterozoic sources.Therefore,our geochemical tools point out to heterogenous signatures of these magnetitequartz rocks and proxies compatible with both low and high-temperature conditions and age of deposition spanning sources from the Archean to the Neoproterozoic.We interpret that the studied São Josédo Campestre magnetite-quartz rocks represent Archean iron formations with original magnetite chemistry and isotopic signatures variably modified by metamorphism and by at least one deformation-related hydrothermal event.These results contrast with similar examples from China and Greenland where iron formations either preserved the magnetite chemistry o展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.41403035)the National Basic Research Program of China(Grant No.2014CB440901)。
文摘As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of its Sm-Nd geochronology and Nd isotopic characteristics.Since the retention of Sm-Nd systematics within scheelite is presently unconstrained,equivocal interpretations for isotopic data resulting from this method have occurred quite often in previous studies that apply these isotopic data.In order to better elucidate the closure of Sm-Nd in scheelite,the kinetics of Sm and Nd within this mineral lattice were investigated through calculation of diffusion constants presented herein.The following Arrhenius relations were obtained:D_(Nd)=4.00exp(-438 kJ·mol^(–1)/RT)cm^(2)/s D_(Sm)=1.85exp(-427 kJ·mol^(–1)/RT)cm^(2)/s showing diffusion rate of Nd is near identical to Sm in scheelite when at the same temperature.However,compared to other rare earth elements(REEs),which have markedly different atomic radii to either Nd or Sm,these are shown to exhibit a great variation in diffusivities.The observed trends in our data are in excellent agreement with the diffusion characteristics of REEs in other tetragonal ABO4 minerals,indicating that ionic radius is a key constraint to the diffusivity of REEs in the various crystal lattices.With this in mind,the same substitution mechanism and a very slight discrepancy in radii will allow us to infer that significant Sm/Nd diffusional fractionation in scheelite is unlikely to occur during most geological processes.Based upon the diffusion data determined herein,Sm and Nd closure temperatures and retention times in scheelite are discussed in terms of diffusion dynamics.Those results suggest that closure temperatures for Sm-Nd within this mineral are relatively high in contrast to the temperature ranges of ore-formation responsible for scheelite-related deposits,and any later thermal environments.It is likely,therefore,that relevant isotopic information could be easily
文摘This study focuses on a virtual synchronous machine(VSM) based on voltage source converters to mimic the behavior of synchronous machines(SMs) and improve the damping ratio of the power system. The VSM model is simplified according to some assumptions(neglecting the speed variation and the stator transients) to allow for the possibility of dealing with low-frequency oscillation in large-scale systems with many VSMs. Furthermore, a virtual power system stabilizer(VPSS) structure is proposed and tuned using a method based on a linearized power system dynamic model. The linear and nonlinear analyses examine the stability of two modified versions of a 16-machine power system in which, in the first case, partial classical machines are replaced by VSMs, and in the second case, all SMs are replaced by VSMs. The simulation results of the case studies validate the efficiency of the proposed control strategy.
基金supported by the National Council for the Improvement of Higher Education(CAPES)the Brazilian Council for Research and Technological Development(CNPQ)。
文摘Iron formations are valuable archives of sedimentary conditions and post-depositional events.However,geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism and deformation,hampering their use as records of regional geological events.This work focuses on strongly reworked magnetite-quartz-rich rocks from the São Josédo Campestre Massif,one of the oldest fragments of preserved crust in South America.The genetic classification of these magnetite-quartz-rich rocks is not straightforward because primary assemblages and textures were variably modified by granulite facies metamorphism during a regional Paleoproterozoic migmatization event.To address genetic ambiguities,we analyzed their magnetite and pyroxene chemistry,wholerock geochemistry,and Sm-Nd isotopes.Magnetite chemistry indicates that pyroxene-poor iron formations(Type B)are low in trace elements such as Ti,Al,V,and Mn,suggesting a chemical similarity to iron formations elsewhere.In contrast,magnetites from pyroxene-enriched Type A iron formations are rich in trace elements and more akin to magnetite crystallized from higher temperature systems,such as skarn and IOCG.The^(147)Sm/^(144)Nd of these rocks show substantial variation even at the outcrop scale,indicating a locally-controlled,highly heterogeneous mixture of Archean,Paleoproterozoic,and Neoproterozoic sources.Therefore,our geochemical tools point out to heterogenous signatures of these magnetitequartz rocks and proxies compatible with both low and high-temperature conditions and age of deposition spanning sources from the Archean to the Neoproterozoic.We interpret that the studied São Josédo Campestre magnetite-quartz rocks represent Archean iron formations with original magnetite chemistry and isotopic signatures variably modified by metamorphism and by at least one deformation-related hydrothermal event.These results contrast with similar examples from China and Greenland where iron formations either preserved the magnetite chemistry o