Systematic analyses of seismic data recorded by the Yunnan regional seismograph network reveal significant crustal and upper mantle anisotropy. Splitting of the S phase of local earthquakes and teleseismic SKS, PKS, a...Systematic analyses of seismic data recorded by the Yunnan regional seismograph network reveal significant crustal and upper mantle anisotropy. Splitting of the S phase of local earthquakes and teleseismic SKS, PKS, and SKKS phases indicates time-delays from 1.60 ms/km to 2.30 ms/km in the crust, and from 0.55 s to 1.65 s in the upper mantle which corresponds to an The polarization orientations of fast shear waves in direction, and the mantle anisotropy has a nearly styles and mechanisms exist between the crust and anisotropic layer with a thickness about between 55 165 km. the crust are complicated with a predominantly north-south west-east direction. Our results show different deformation upper mantle.展开更多
By using the polarization analysis of teleseismic SKS waveform data recorded at 116 seismic stations which respectively involved in China National Digital Seismograph Network, and Yunnan, Sichuan, Gansu and Qinghai re...By using the polarization analysis of teleseismic SKS waveform data recorded at 116 seismic stations which respectively involved in China National Digital Seismograph Network, and Yunnan, Sichuan, Gansu and Qinghai regional digital networks, and portable broadband seismic networks deployed in Sichuan, Yunnan and Tibet, we obtained the SKS fast-wave direction and the delay time between fast and slow waves of each station by use of the stacking analysis method, and finally acquired the fine image of upper mantle anisotropy in the eastern Tibetan Plateau and its adjacent regions. We analyzed the crust-mantle coupling deformation on the basis of combining the GPS observation results and the upper mantle anisotropy distribution in the study area. The Yunnan region out of the plateau has dif-ferent features of crust-mantle deformation from the inside plateau. There exists a lateral transitional zone of crust-mantle coupling in the eastern edge of the Tibetan Plateau, which is located in the region between 26° and 27°N in the west of Sichuan and Yunnan. To the south of transitional zone, the fast-wave direction is gradually turned from S60°―70°E in southwestern Yunnan to near EW in south-eastern Yunnan. To the north of transitional zone in northwestern Yunnan and the south of western Sichuan, the fast-wave direction is nearly NS. From crust to upper mantle, the geophysical parameters (e.g. the crustal thickness, the Bouguer gravity anomaly, and tectonic stress direction) show the feature of lateral variation in the transitional zone, although the fault trend on the ground surface is inconsis-tent with the fast-wave direction. This transitional zone is close by the eastern Himalayan syntaxis, and it may play an important role in the plate boundary dynamics.展开更多
Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and tem...Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and temporary broadband seismograph networks deployed in the Ordos Block and its margins.Both the Silver and Chan and stacking analysis methods were used.In this way,an image of upper mantle anisotropy in the Ordos Block and its margins was acquired.In the western and northern margins of the Ordos Block,the fast-wave directions are consistently NW-SE.The fast-wave directions are mainly NWW-SEE and EW in the southern margin of the Ordos Block.In the eastern margin of the Ordos Block,the fast-wave directions are generally EW,although some run NEE-SWW or NWW-SEE.In the Ordos Block,the fast-wave directions trend near N-S in the north,but switch to near EW in the south.The delay time between fast and slow waves falls into the interval 0.48-1.50 s,and the average delay time at the stations in the Ordos Block is less than that in its margins.We suggest that the anisotropy of the stable Ordos Block is mainly caused by "fossil" anisotropy frozen in the ancient North China Craton.The NE-trending push of the northeastern margin of the Tibetan Plateau has caused NW-SE-trending lithospheric extension in the western and northern margins of the Ordos Block,and made the upper mantle flow southeastwards.This in turn has resulted in the alignment of the upper mantle peridotite lattice with the direction of material deformation.In the southern margin of the Ordos Block,the collision between the North China and Yangtze blocks resulted in the fast-wave direction running parallel to the collision boundary and the Qinling Orogen.Combining this with the APM and velocity structure of the Qinling Orogen,we propose that eastward-directed asthenospheric-mantle channel flow may have occurred beneath the Qinling Orogen.In the eastern margin of the Ordos Block,the complex anisotropic characteristics of the Fenhe Graben and Taihang Orogen展开更多
Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, ...Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by use of SC method and the stacking analysis method, and then the image of upper mantle anisotropy in eastern China was acquired. In the study region, from south to north, the fast-wave polarization directions are basically EW in South China, gradually clockwise rotate to NWW-SEE in North China, then to NW-SE in Northeast China. The delay time falls into the interval [0.41 s, 1.52 s]. Anisotropic characteristics in eastern China indicate that the upper mantle anisotropy is possibly caused by both the collision between the Indian and Eurasian Plates and the subduction from the Pacific and Philippine Sea Plates to the Eurasian Plate. The collision between two plates made the crust of western China thickening and uplifting and the material eastwards extruding, and then caused the upper mantle flow eastwards and southeastwards. The subduction of Pacific Plate and Philippine Sea Plate has resulted in the lithosphere and the asthenosphere deformation in eastern China, and made the alignment of upper mantle peridotite lattice parallel to the deformation direction. The fast-wave polarization direction is consistent with the direction of lithosphere extension and the GPS velocity direction, implying that the crust-upper mantle deformation is possibly a vertically coherent deformation.展开更多
The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing t...The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing the smeltingcharacteristics deeply.In our model,the furnace section from top to bottom is divided into seven functional layers,i.e.,gas layer,mineral decomposition transitioning layer,slag layer,slag formation transitioning layer,matte formation transitioning layer,weakoxidizing layer and strong oxidizing layer.The furnace along the length direction is divided into three functional regions,that is,reaction region,separation transitioning region and liquid phase separation and settling region.These layers or regions play differentroles in the model in describing the mechanism of the smelting process.The SKS smelting is at a multiphase non-steady equilibriumstate,and the oxygen and sulfur potentials change gradually in the length and cross directions.The smelting capacity of the SKSprocess could be raised through reasonably controlling the potential values in different layers and regions.展开更多
Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow ...Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow shear waves were determined at each station using the grid searching method of minimum transverse energy and the stacking analysis method, and the image of upper mantle anisot-ropy was acquired. The fast-wave polarization directions are mainly NW-SE in the study area, NWW-SEE to its northeast and NS to its west. The delay time falls into the interval [0.47 s, 1.68 s]. The spatial variation of the fast-wave directions is similar to the variation of GPS velocity directions. The anisotropic image indicates that the regional tectonic stress field has resulted in deformation and flow of upper mantle material, and made the alignment of upper mantle peridotite lattice parallel to the di-rection of material deformation. The crust-upper mantle deformation in Sichuan and adjacent regions accords with the mode of vertically coherent deformation. In the eastern Tibetan Plateau, the crustal material was extruded to east or southeast due to SE traction force of the upper mantle material. The extrusion might be obstructed by a rigid block under the Sichuan Basin and the crust has been de-formed. After a long-term accumulation of tectonic strain energy, the accumulative energy suddenly released in Yingxiu town of the Longmenshan region, and Wenchuan MS8.0 earthquake occurred.展开更多
A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.T...A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.The calculated results of the model show that,under the given stable production condition,the contents of Cu,Fe and S in matte are71.08%,7.15%and17.51%,and the contents of Fe,SiO2and Cu in slag are42.17%,25.05%and3.16%.The calculated fractional distributions of minor elements among gas,slag and matte phases are As82.69%,11.22%,6.09%,Sb16.57%,70.63%,12.80%,Bi68.93%,11.30%,19.77%,Pb19.70%,24.75%,55.55%and Zn17.94%,64.28%,17.79%,respectively.The calculated results of the multiphase equilibrium model agree well with the actual industrial production data,indicating that the credibility of the model is validated.Therefore,the model could be used to monitor and optimize the industrial operations of SKS process.展开更多
A field study was conducted to determine the behavior and distribution of arsenic during the pyrometallurgy process in a typical SKS(Shuikoushan) lead smelter in Hunan province, China. Environmental influences of arse...A field study was conducted to determine the behavior and distribution of arsenic during the pyrometallurgy process in a typical SKS(Shuikoushan) lead smelter in Hunan province, China. Environmental influences of arsenic in selected samples were evaluated. Arsenic contents in all input and output samples vary from 0.11% in raw lead to 6.66% in collected dust-2. More arsenic is volatilized in blast furnace and fuming furnace(73.02% of arsenic input) than bottom blowing furnace(10.29% of arsenic input).There are 78.97%, 13.69%, 7.31% of total arsenic distributed in intermediate materials, stockpiled materials and unorganized emissions, respectively. Matte slag-2, collected dust-1 and secondary zinc oxide are hazardous based on the arsenic concentrations of toxicity characteristic leaching procedure. According to risk assessment code(RAC) guideline, arsenic in collected dust-1 poses a very serious risk to the surrounding environment, arsenic in speiss, matte slag-2, water-quenched slag and secondary zinc oxide show low risk, while arsenic in matte slag-1, collected dust-2 and post dust has no risk to the environment.展开更多
In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research resu...In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.展开更多
The shear wave splitting in SKS are investigated from all available teleseismic data recorded at the broad band stations of China Digital Seismograph Network. The polarization direction of fast S wave of anisotropy an...The shear wave splitting in SKS are investigated from all available teleseismic data recorded at the broad band stations of China Digital Seismograph Network. The polarization direction of fast S wave of anisotropy and the time delay of slow S wave are determined. Detectable shear wave splitting was found at eight analysed stations of CDSN. Time delay ranges from 0. 7 s to 1. 7 s. The previous work show that the shear wave splitting of SKS which propagate through the mantle is due to the anisotropy in upper mantle. The anisotropy in upper mantle can be interpreted by the strain-induced lattice dominant orientation of mantle minerals. The thickness of the anisotropic layer responsible for SKS wave splitting, which is estimated from time delay, corresponds generally to the thickness of lithosphere beneath Chinese mainland, which is estimated from depth of the high conductivity layer and the low velocity layer in the upper mantle. In most stations, the polarization direction of fast S wave obtained in this study are generally close to these predicted by the deformation of intraplate blocks as a whole. However, there is obvious difference between the two directions at some stations. This suggests that the causes of this well observed phenomenon are clearly complex. In order to interpret the shear wave splitting of mantle shear wave, more high-quality observation and more additional information about the strain in the mantle will be needed.展开更多
We use earthquakes recorded by the China National Seismic Network from 2015 to 2019 and measure shear wave splitting parameters of SKS to study the anisotropic characteristics beneath the mainland of China.In general,...We use earthquakes recorded by the China National Seismic Network from 2015 to 2019 and measure shear wave splitting parameters of SKS to study the anisotropic characteristics beneath the mainland of China.In general,the fast directions change from nearly E-W in western China(northwest China and Qinghai-Tibetan Plateau)to nearly N-S in central China(Ordos and Sichuan-Yunnan),and then turn to approximately E-W in eastern China(North and South China).The delay times of slow wave in eastern China are about 1.0-1.7 s,larger than those in central and western China(about 0.6-1.0 s).In addition,the fast directions in eastern China are highly consistent with the plate motion direction and horizontal GPS velocities with respect to Eurasia,indicating that the observed anisotropy is mainly from the asthenosphere which is strongly coupled to the overlying lithosphere.However,the fast directions in western China are mostly in accord with the strike of the surface structures(such as faults),possibly due to the directional arrangement of crystal lattices caused by shear deformation under tectonic activities.展开更多
基金supported by National NaturalScience Foundation of China Project(No.41174042)China National Special Fund for Earthquake Scientific Research in Public Interest(No.201008001)Basic Research Project of Institute of Earthquake Science,CEA(No.2009-21)
文摘Systematic analyses of seismic data recorded by the Yunnan regional seismograph network reveal significant crustal and upper mantle anisotropy. Splitting of the S phase of local earthquakes and teleseismic SKS, PKS, and SKKS phases indicates time-delays from 1.60 ms/km to 2.30 ms/km in the crust, and from 0.55 s to 1.65 s in the upper mantle which corresponds to an The polarization orientations of fast shear waves in direction, and the mantle anisotropy has a nearly styles and mechanisms exist between the crust and anisotropic layer with a thickness about between 55 165 km. the crust are complicated with a predominantly north-south west-east direction. Our results show different deformation upper mantle.
基金the Continental Dynamics Program of the National Natural Science Foundation of China (Grant No. 40334041)the International Cooperation Pro-gram of the Ministry of Science and Technology of China (Grant No. 2003DF000011)
文摘By using the polarization analysis of teleseismic SKS waveform data recorded at 116 seismic stations which respectively involved in China National Digital Seismograph Network, and Yunnan, Sichuan, Gansu and Qinghai regional digital networks, and portable broadband seismic networks deployed in Sichuan, Yunnan and Tibet, we obtained the SKS fast-wave direction and the delay time between fast and slow waves of each station by use of the stacking analysis method, and finally acquired the fine image of upper mantle anisotropy in the eastern Tibetan Plateau and its adjacent regions. We analyzed the crust-mantle coupling deformation on the basis of combining the GPS observation results and the upper mantle anisotropy distribution in the study area. The Yunnan region out of the plateau has dif-ferent features of crust-mantle deformation from the inside plateau. There exists a lateral transitional zone of crust-mantle coupling in the eastern edge of the Tibetan Plateau, which is located in the region between 26° and 27°N in the west of Sichuan and Yunnan. To the south of transitional zone, the fast-wave direction is gradually turned from S60°―70°E in southwestern Yunnan to near EW in south-eastern Yunnan. To the north of transitional zone in northwestern Yunnan and the south of western Sichuan, the fast-wave direction is nearly NS. From crust to upper mantle, the geophysical parameters (e.g. the crustal thickness, the Bouguer gravity anomaly, and tectonic stress direction) show the feature of lateral variation in the transitional zone, although the fault trend on the ground surface is inconsis-tent with the fast-wave direction. This transitional zone is close by the eastern Himalayan syntaxis, and it may play an important role in the plate boundary dynamics.
基金supported by National Natural Science Foundation of China (Grant Nos. 40904023 and 90914005)the Special Project for the Fundamental R & D of Institute of Geophysics,China Earthquake Administration (Grant Nos. DQJB06B06, DQJB10B16)the Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100)
文摘Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and temporary broadband seismograph networks deployed in the Ordos Block and its margins.Both the Silver and Chan and stacking analysis methods were used.In this way,an image of upper mantle anisotropy in the Ordos Block and its margins was acquired.In the western and northern margins of the Ordos Block,the fast-wave directions are consistently NW-SE.The fast-wave directions are mainly NWW-SEE and EW in the southern margin of the Ordos Block.In the eastern margin of the Ordos Block,the fast-wave directions are generally EW,although some run NEE-SWW or NWW-SEE.In the Ordos Block,the fast-wave directions trend near N-S in the north,but switch to near EW in the south.The delay time between fast and slow waves falls into the interval 0.48-1.50 s,and the average delay time at the stations in the Ordos Block is less than that in its margins.We suggest that the anisotropy of the stable Ordos Block is mainly caused by "fossil" anisotropy frozen in the ancient North China Craton.The NE-trending push of the northeastern margin of the Tibetan Plateau has caused NW-SE-trending lithospheric extension in the western and northern margins of the Ordos Block,and made the upper mantle flow southeastwards.This in turn has resulted in the alignment of the upper mantle peridotite lattice with the direction of material deformation.In the southern margin of the Ordos Block,the collision between the North China and Yangtze blocks resulted in the fast-wave direction running parallel to the collision boundary and the Qinling Orogen.Combining this with the APM and velocity structure of the Qinling Orogen,we propose that eastward-directed asthenospheric-mantle channel flow may have occurred beneath the Qinling Orogen.In the eastern margin of the Ordos Block,the complex anisotropic characteristics of the Fenhe Graben and Taihang Orogen
基金Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB06B06)Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100)+1 种基金China Digital Earthquake Observation Network Project "North China Seismic Array"National Natural Science Foundation of China (Grant Nos. 40334041 and 40774037)
文摘Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by use of SC method and the stacking analysis method, and then the image of upper mantle anisotropy in eastern China was acquired. In the study region, from south to north, the fast-wave polarization directions are basically EW in South China, gradually clockwise rotate to NWW-SEE in North China, then to NW-SE in Northeast China. The delay time falls into the interval [0.41 s, 1.52 s]. Anisotropic characteristics in eastern China indicate that the upper mantle anisotropy is possibly caused by both the collision between the Indian and Eurasian Plates and the subduction from the Pacific and Philippine Sea Plates to the Eurasian Plate. The collision between two plates made the crust of western China thickening and uplifting and the material eastwards extruding, and then caused the upper mantle flow eastwards and southeastwards. The subduction of Pacific Plate and Philippine Sea Plate has resulted in the lithosphere and the asthenosphere deformation in eastern China, and made the alignment of upper mantle peridotite lattice parallel to the deformation direction. The fast-wave polarization direction is consistent with the direction of lithosphere extension and the GPS velocity direction, implying that the crust-upper mantle deformation is possibly a vertically coherent deformation.
基金Project(51620105013)supported by the National Natural Science Foundation of China
文摘The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing the smeltingcharacteristics deeply.In our model,the furnace section from top to bottom is divided into seven functional layers,i.e.,gas layer,mineral decomposition transitioning layer,slag layer,slag formation transitioning layer,matte formation transitioning layer,weakoxidizing layer and strong oxidizing layer.The furnace along the length direction is divided into three functional regions,that is,reaction region,separation transitioning region and liquid phase separation and settling region.These layers or regions play differentroles in the model in describing the mechanism of the smelting process.The SKS smelting is at a multiphase non-steady equilibriumstate,and the oxygen and sulfur potentials change gradually in the length and cross directions.The smelting capacity of the SKSprocess could be raised through reasonably controlling the potential values in different layers and regions.
基金the National Natural Science Foundation of China (Grant Nos. 40334041 and 40774037)the Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB06B06)the Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100)
文摘Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow shear waves were determined at each station using the grid searching method of minimum transverse energy and the stacking analysis method, and the image of upper mantle anisot-ropy was acquired. The fast-wave polarization directions are mainly NW-SE in the study area, NWW-SEE to its northeast and NS to its west. The delay time falls into the interval [0.47 s, 1.68 s]. The spatial variation of the fast-wave directions is similar to the variation of GPS velocity directions. The anisotropic image indicates that the regional tectonic stress field has resulted in deformation and flow of upper mantle material, and made the alignment of upper mantle peridotite lattice parallel to the di-rection of material deformation. The crust-upper mantle deformation in Sichuan and adjacent regions accords with the mode of vertically coherent deformation. In the eastern Tibetan Plateau, the crustal material was extruded to east or southeast due to SE traction force of the upper mantle material. The extrusion might be obstructed by a rigid block under the Sichuan Basin and the crust has been de-formed. After a long-term accumulation of tectonic strain energy, the accumulative energy suddenly released in Yingxiu town of the Longmenshan region, and Wenchuan MS8.0 earthquake occurred.
基金Project(51620105013)supported by the National Natural Science Foundation of China
文摘A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.The calculated results of the model show that,under the given stable production condition,the contents of Cu,Fe and S in matte are71.08%,7.15%and17.51%,and the contents of Fe,SiO2and Cu in slag are42.17%,25.05%and3.16%.The calculated fractional distributions of minor elements among gas,slag and matte phases are As82.69%,11.22%,6.09%,Sb16.57%,70.63%,12.80%,Bi68.93%,11.30%,19.77%,Pb19.70%,24.75%,55.55%and Zn17.94%,64.28%,17.79%,respectively.The calculated results of the multiphase equilibrium model agree well with the actual industrial production data,indicating that the credibility of the model is validated.Therefore,the model could be used to monitor and optimize the industrial operations of SKS process.
基金Project(2011AA061001)supported by the National High Technology Research and Development Program of ChinaProject(51304251)supported by the National Natural Science Foundation of China+1 种基金Project(2013M542141)supported by China Postdoctoral FoundationProject(K1201010-61)supported by Planned Program of Science and Technology of Changsha,China
文摘A field study was conducted to determine the behavior and distribution of arsenic during the pyrometallurgy process in a typical SKS(Shuikoushan) lead smelter in Hunan province, China. Environmental influences of arsenic in selected samples were evaluated. Arsenic contents in all input and output samples vary from 0.11% in raw lead to 6.66% in collected dust-2. More arsenic is volatilized in blast furnace and fuming furnace(73.02% of arsenic input) than bottom blowing furnace(10.29% of arsenic input).There are 78.97%, 13.69%, 7.31% of total arsenic distributed in intermediate materials, stockpiled materials and unorganized emissions, respectively. Matte slag-2, collected dust-1 and secondary zinc oxide are hazardous based on the arsenic concentrations of toxicity characteristic leaching procedure. According to risk assessment code(RAC) guideline, arsenic in collected dust-1 poses a very serious risk to the surrounding environment, arsenic in speiss, matte slag-2, water-quenched slag and secondary zinc oxide show low risk, while arsenic in matte slag-1, collected dust-2 and post dust has no risk to the environment.
基金financially supported by the National Natural Science Foundation of China (No. 51620105013)Dongying Fangyuan Nonferrous Metals Co., Ltd.
文摘In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.
文摘The shear wave splitting in SKS are investigated from all available teleseismic data recorded at the broad band stations of China Digital Seismograph Network. The polarization direction of fast S wave of anisotropy and the time delay of slow S wave are determined. Detectable shear wave splitting was found at eight analysed stations of CDSN. Time delay ranges from 0. 7 s to 1. 7 s. The previous work show that the shear wave splitting of SKS which propagate through the mantle is due to the anisotropy in upper mantle. The anisotropy in upper mantle can be interpreted by the strain-induced lattice dominant orientation of mantle minerals. The thickness of the anisotropic layer responsible for SKS wave splitting, which is estimated from time delay, corresponds generally to the thickness of lithosphere beneath Chinese mainland, which is estimated from depth of the high conductivity layer and the low velocity layer in the upper mantle. In most stations, the polarization direction of fast S wave obtained in this study are generally close to these predicted by the deformation of intraplate blocks as a whole. However, there is obvious difference between the two directions at some stations. This suggests that the causes of this well observed phenomenon are clearly complex. In order to interpret the shear wave splitting of mantle shear wave, more high-quality observation and more additional information about the strain in the mantle will be needed.
基金supported by the National Natural Science Foundation of China(under grants 41874050,41722401).
文摘We use earthquakes recorded by the China National Seismic Network from 2015 to 2019 and measure shear wave splitting parameters of SKS to study the anisotropic characteristics beneath the mainland of China.In general,the fast directions change from nearly E-W in western China(northwest China and Qinghai-Tibetan Plateau)to nearly N-S in central China(Ordos and Sichuan-Yunnan),and then turn to approximately E-W in eastern China(North and South China).The delay times of slow wave in eastern China are about 1.0-1.7 s,larger than those in central and western China(about 0.6-1.0 s).In addition,the fast directions in eastern China are highly consistent with the plate motion direction and horizontal GPS velocities with respect to Eurasia,indicating that the observed anisotropy is mainly from the asthenosphere which is strongly coupled to the overlying lithosphere.However,the fast directions in western China are mostly in accord with the strike of the surface structures(such as faults),possibly due to the directional arrangement of crystal lattices caused by shear deformation under tectonic activities.