In this paper, stable single-mode operation at high temperatures is produced by the surface-relief-integrated vertical cavity surface emitting laser(VCSEL). The gain-cavity mode detuning technique is employed to rea...In this paper, stable single-mode operation at high temperatures is produced by the surface-relief-integrated vertical cavity surface emitting laser(VCSEL). The gain-cavity mode detuning technique is employed to realize high operating temperatures for the VCSEL. The surface relief is etched in the centre of the top side as a mode discriminator for the fundamental mode output, and the threshold current minimum is 1.94 mA at high temperatures by the gain-cavity mode detuning technique. Maximum single-fundamental-mode output power of 0.45 mW at 80℃ is obtained, and the side mode suppression ratios(SMSRs) are more than 30 dB with increasing temperature and current, respectively.展开更多
The mode-area scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can opera...The mode-area scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300μm in core diameter with numerical aperture 0.1.展开更多
For a fully chaotic two-dimensional(2D) microcavity laser, we present a theory that guarantees both the existence of a stable single-mode lasing state and the nonexistence of a stable multimode lasing state, under the...For a fully chaotic two-dimensional(2D) microcavity laser, we present a theory that guarantees both the existence of a stable single-mode lasing state and the nonexistence of a stable multimode lasing state, under the assumptions that the cavity size is much larger than the wavelength and the external pumping power is sufficiently large. It is theoretically shown that these universal spectral characteristics arise from the synergistic effect of two different kinds of nonlinearities: deformation of the cavity shape and mode interaction due to a lasing medium. Our theory is based on the linear stability analysis of stationary states for the Maxwell–Bloch equations and accounts for single-mode lasing phenomena observed in real and numerical experiments of fully chaotic 2D microcavitylasers.展开更多
We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift(EPS) of quarter-wave integrated with a distributed Bragg reflector(DBR) at λ~5.03 μm. The EPS is fabricate...We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift(EPS) of quarter-wave integrated with a distributed Bragg reflector(DBR) at λ~5.03 μm. The EPS is fabricated through extending one sampling period by 50% in the center of a sampled Bragg grating. The key EPS and DBR pattern are fabricated by conventional holographic exposure combined with the optical photolithography technology, which leads to improved flexibility, repeatability, and cost-effectiveness. Stable single-mode emission can be obtained by changing the injection current or heat sink temperature even under the condition of large driving pulse width.展开更多
Realizing the logic operations with small-scale states is pursued to improve the utilization of quantum resources and to simplify the experimental setup. We propose a scheme to realize a general single-mode Gauss/an o...Realizing the logic operations with small-scale states is pursued to improve the utilization of quantum resources and to simplify the experimental setup. We propose a scheme to realize a general single-mode Gauss/an operation with a two-mode entangled state by utilizing only one nondegenerate optical parametric amplifier and by adjusting four angle parameters. The fidelity of the output mode can be optimized by changing one of the angle parameters. This scheme would be utilized as a basic efficient element in the future large-scale quantum computation.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61434005,61474118,11674314,51672264,and 11404326)the Science and Technology Program of Jilin Province,China(Grant No.20150203011GX)+1 种基金the Science and Technology Program of Changchun City,China(Grant No.15SS02)the Youth Innovation Promotion Association of China(Grant No.2017260)
文摘In this paper, stable single-mode operation at high temperatures is produced by the surface-relief-integrated vertical cavity surface emitting laser(VCSEL). The gain-cavity mode detuning technique is employed to realize high operating temperatures for the VCSEL. The surface relief is etched in the centre of the top side as a mode discriminator for the fundamental mode output, and the threshold current minimum is 1.94 mA at high temperatures by the gain-cavity mode detuning technique. Maximum single-fundamental-mode output power of 0.45 mW at 80℃ is obtained, and the side mode suppression ratios(SMSRs) are more than 30 dB with increasing temperature and current, respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10576012 and 60538010.
文摘The mode-area scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300μm in core diameter with numerical aperture 0.1.
文摘For a fully chaotic two-dimensional(2D) microcavity laser, we present a theory that guarantees both the existence of a stable single-mode lasing state and the nonexistence of a stable multimode lasing state, under the assumptions that the cavity size is much larger than the wavelength and the external pumping power is sufficiently large. It is theoretically shown that these universal spectral characteristics arise from the synergistic effect of two different kinds of nonlinearities: deformation of the cavity shape and mode interaction due to a lasing medium. Our theory is based on the linear stability analysis of stationary states for the Maxwell–Bloch equations and accounts for single-mode lasing phenomena observed in real and numerical experiments of fully chaotic 2D microcavitylasers.
基金National Basic Research Program of China(2013CB632800)National Key Research and Development Program(2016YFB0402303)+2 种基金National Natural Science Foundation of China(NSFC)(61404131,61435014,61674144,61574136,61627822)Chinese Academy of Sciences Key Project(CAS Key Project)(QYZDJ-SSWJSC027,ZDRW-XH-2016-4)Natural Science Foundation of Beijing Municipality(4162060,4172060)
文摘We report an index-coupled distributed feedback quantum cascade laser by employing an equivalent phase shift(EPS) of quarter-wave integrated with a distributed Bragg reflector(DBR) at λ~5.03 μm. The EPS is fabricated through extending one sampling period by 50% in the center of a sampled Bragg grating. The key EPS and DBR pattern are fabricated by conventional holographic exposure combined with the optical photolithography technology, which leads to improved flexibility, repeatability, and cost-effectiveness. Stable single-mode emission can be obtained by changing the injection current or heat sink temperature even under the condition of large driving pulse width.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61205115,11474003 and 61675006the Natural Science Foundation of Anhui Province under Grant Nos 1608085MF133 and 1408085MA19+1 种基金the Foundation for the Young Talent of Anhui Province under Grant No gxyqZD2016065the Youth Foundation of Anhui University of Technology under Grant Nos RD16100249
文摘Realizing the logic operations with small-scale states is pursued to improve the utilization of quantum resources and to simplify the experimental setup. We propose a scheme to realize a general single-mode Gauss/an operation with a two-mode entangled state by utilizing only one nondegenerate optical parametric amplifier and by adjusting four angle parameters. The fidelity of the output mode can be optimized by changing one of the angle parameters. This scheme would be utilized as a basic efficient element in the future large-scale quantum computation.