We propose a model of weighted networks in which the structural evolution is coupled with weight dynamics. Based on a simple merging and regeneration process, the model gives powel-law distributions of degree, strengt...We propose a model of weighted networks in which the structural evolution is coupled with weight dynamics. Based on a simple merging and regeneration process, the model gives powel-law distributions of degree, strength and weight, as observed in many real networks. It should be emphasized that, in our model, the nontrivial degree-strength correlation can be reproduced and in agreement with empirical data. Moreover, the size-growing evolution model is also presented to meet the properties of real-world systems.展开更多
We propose a new definition of complexity. The definition shows that when a system evolves to a final state via a transient state, its complexity depends on the abundance of both the final state and transient state. T...We propose a new definition of complexity. The definition shows that when a system evolves to a final state via a transient state, its complexity depends on the abundance of both the final state and transient state. The abundance of the transient state may be described by the diversity of the response to disturbance. We hope that this definition can describe a clear boundary between simple systems and complex systems by showing that all the simple systems have zero complexity, and all the complex systems have positive complexity. Some examples of the complexity calculations are presented, which supports our hope.展开更多
Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity) function in ecosystem models. Q10 is usually treated as a constant of 2 in these models, although Q10 value of SR often ...Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity) function in ecosystem models. Q10 is usually treated as a constant of 2 in these models, although Q10 value of SR often decreases with increasing temperatures. It remains unclear whether a general temperature- dependent Q10 model of SR exists at biome and global scale. In this paper, we have compiled the long-term Q10 data of 38 SR studies ranging from the Boreal, Temperate, to Tropical/Sublropical biome on four continents. Our analysis indicated that the general temperature-dependent biome Q10 models of SR existed, especially in the Boreal and Temperate biomes. A single-exponential model was better than a simple linear model in fitting the average Q10 values at the biome scale. Average soil temperature is a better predictor of Q10 value than average air temperature in these models, especially in the Boreal biome. Soil temperature alone could explain about 50% of the Q10 variations in both the Boreal and Temperate biome single-exponential Q10 model. Q10 value of SR decreased with increasing soil temperature but at quite different rates among the three biome Q10 models. The k values (Q10 decay rate constants) were 0.09, 0.07, and 0.02/℃ in the Boreal, Temperate, and Tropical/Subtropical biome, respectively, suggesting that Q10 value is the most sensitive to soil temperature change in the Boreal biome, the second in the Temperate biome, and the least sensitive in the Tropical/ Subtropical biome. This also indirectly confirms that acclimation of SR in many soil warming experiments probably occurs. The k value in the "global" single-exponential Q10 model which combined both the Boreal and Temperate biome data set was 0.08/℃. However, the global general temperature-dependent Q10 model developed using the data sets of the three biomes is not adequate for predicting Q10 values of SR globally. The existence of the general temperature-dependent Q10 models of SR in the Boreal and Temperate biome has important im展开更多
以位山试验站典型农田为对象,利用位山站2005-10-10~2006-06-10日的实验观测数据,探讨了冬小麦整个生长期农田的热、碳通量特征,并运用SiB2(simple biosphere model Version2)模型对热、碳通量进行了模拟分析,结果表明,农田的热、碳通...以位山试验站典型农田为对象,利用位山站2005-10-10~2006-06-10日的实验观测数据,探讨了冬小麦整个生长期农田的热、碳通量特征,并运用SiB2(simple biosphere model Version2)模型对热、碳通量进行了模拟分析,结果表明,农田的热、碳通量在冬小麦生长过程中表现出明显的日变化,这些通量的最大值基本出现在正午前后;热、碳通量的日际变化也较明显,其中净辐射与潜热通量在冬小麦不同生长期表现为:越冬期<拔节抽穗期<灌浆成熟期;感热通量表现为:拔节抽穗期<灌浆成熟期<越冬期;而CO2通量为:越冬期<灌浆成熟期<拔节抽穗期.对以上通量及地表温度的模拟表明,SiB2模型能较好地模拟冬小麦生长期中农田热、碳通量及地表温度,净辐射、潜热通量、感热通量、CO2通量与地表温度的模拟值与观测值的一致性较好,线性相关系数R2分别达0.985、0.637、0.481、0.725、0.499与0.877,其中感热通量与CO2通量模拟偏差较大.另外,按冬小麦生长期分阶段对农田以上分量模拟结果表明,SiB2模型在冬小麦拔节抽穗期模拟效果最好,并发现模型对叶面积指数敏感.展开更多
A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination ...A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination of a viscoelastic-component and a postulated kinetics process of structure change, which is constituted in terms of the indirect microstructural approach usually adopted in the characterization of thixotropy. The descriptions of the thixotropy model on both the thixotropy-loop tests and the startup test show good agreement with the experimental values, indicating the good capability of the model in characterizing the time-dependent nonlinear viscoelastic. The stress overshoot phenomenon and the stress relaxation after cessation of the thixotropy loop test can be described well by the model, whereas both of the typical viscoelastic phenomena could not be described in our previous work with a variant Huang model.展开更多
基金Supported by the National 0utstanding Young Investigator Foundation of China under Grant No 70225005, the National Natural Science Foundation of China under Grant No 70471088.
文摘We propose a model of weighted networks in which the structural evolution is coupled with weight dynamics. Based on a simple merging and regeneration process, the model gives powel-law distributions of degree, strength and weight, as observed in many real networks. It should be emphasized that, in our model, the nontrivial degree-strength correlation can be reproduced and in agreement with empirical data. Moreover, the size-growing evolution model is also presented to meet the properties of real-world systems.
基金Supported by the National Natural Science Foundation of China under grant Nos 10635040 (key project), 70671089 and 70371071.
文摘We propose a new definition of complexity. The definition shows that when a system evolves to a final state via a transient state, its complexity depends on the abundance of both the final state and transient state. The abundance of the transient state may be described by the diversity of the response to disturbance. We hope that this definition can describe a clear boundary between simple systems and complex systems by showing that all the simple systems have zero complexity, and all the complex systems have positive complexity. Some examples of the complexity calculations are presented, which supports our hope.
文摘Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity) function in ecosystem models. Q10 is usually treated as a constant of 2 in these models, although Q10 value of SR often decreases with increasing temperatures. It remains unclear whether a general temperature- dependent Q10 model of SR exists at biome and global scale. In this paper, we have compiled the long-term Q10 data of 38 SR studies ranging from the Boreal, Temperate, to Tropical/Sublropical biome on four continents. Our analysis indicated that the general temperature-dependent biome Q10 models of SR existed, especially in the Boreal and Temperate biomes. A single-exponential model was better than a simple linear model in fitting the average Q10 values at the biome scale. Average soil temperature is a better predictor of Q10 value than average air temperature in these models, especially in the Boreal biome. Soil temperature alone could explain about 50% of the Q10 variations in both the Boreal and Temperate biome single-exponential Q10 model. Q10 value of SR decreased with increasing soil temperature but at quite different rates among the three biome Q10 models. The k values (Q10 decay rate constants) were 0.09, 0.07, and 0.02/℃ in the Boreal, Temperate, and Tropical/Subtropical biome, respectively, suggesting that Q10 value is the most sensitive to soil temperature change in the Boreal biome, the second in the Temperate biome, and the least sensitive in the Tropical/ Subtropical biome. This also indirectly confirms that acclimation of SR in many soil warming experiments probably occurs. The k value in the "global" single-exponential Q10 model which combined both the Boreal and Temperate biome data set was 0.08/℃. However, the global general temperature-dependent Q10 model developed using the data sets of the three biomes is not adequate for predicting Q10 values of SR globally. The existence of the general temperature-dependent Q10 models of SR in the Boreal and Temperate biome has important im
文摘以位山试验站典型农田为对象,利用位山站2005-10-10~2006-06-10日的实验观测数据,探讨了冬小麦整个生长期农田的热、碳通量特征,并运用SiB2(simple biosphere model Version2)模型对热、碳通量进行了模拟分析,结果表明,农田的热、碳通量在冬小麦生长过程中表现出明显的日变化,这些通量的最大值基本出现在正午前后;热、碳通量的日际变化也较明显,其中净辐射与潜热通量在冬小麦不同生长期表现为:越冬期<拔节抽穗期<灌浆成熟期;感热通量表现为:拔节抽穗期<灌浆成熟期<越冬期;而CO2通量为:越冬期<灌浆成熟期<拔节抽穗期.对以上通量及地表温度的模拟表明,SiB2模型能较好地模拟冬小麦生长期中农田热、碳通量及地表温度,净辐射、潜热通量、感热通量、CO2通量与地表温度的模拟值与观测值的一致性较好,线性相关系数R2分别达0.985、0.637、0.481、0.725、0.499与0.877,其中感热通量与CO2通量模拟偏差较大.另外,按冬小麦生长期分阶段对农田以上分量模拟结果表明,SiB2模型在冬小麦拔节抽穗期模拟效果最好,并发现模型对叶面积指数敏感.
基金The project supported by the National Natural Science Foundation of China(10402024)the Experiment Foundation for Precise Instrument of Shanghai Jiao Tong University(200207)
文摘A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination of a viscoelastic-component and a postulated kinetics process of structure change, which is constituted in terms of the indirect microstructural approach usually adopted in the characterization of thixotropy. The descriptions of the thixotropy model on both the thixotropy-loop tests and the startup test show good agreement with the experimental values, indicating the good capability of the model in characterizing the time-dependent nonlinear viscoelastic. The stress overshoot phenomenon and the stress relaxation after cessation of the thixotropy loop test can be described well by the model, whereas both of the typical viscoelastic phenomena could not be described in our previous work with a variant Huang model.