The existing spatially variant apodizations (SVAs) either cannot depress the sidelobes effectively or reduce the energy of the mainlobe.To improve this,a modified SVA (MSVA) is put forward in this paper,which expands ...The existing spatially variant apodizations (SVAs) either cannot depress the sidelobes effectively or reduce the energy of the mainlobe.To improve this,a modified SVA (MSVA) is put forward in this paper,which expands the traditional filter from 3-taps to 5-taps and sets relevant parameters according to different sampling rates to get the excellent result that satisfies constrained optimization theory.A method for synthetic aperture radar (SAR) sidelobe control based on MSVA is presented,which applies MSVA to range compression and azimuth compression to control sidelobes.This method which is available for any Nyquist sampling rate can both depress the sidelobes effectively and keep the energy of the mainlobe and the resolution of the image.The method can reduce sidelobe levels more effectively than classical amplitude weighting while maintaining the image resolution,as demonstrated by the result of the experiment.展开更多
Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellat...Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.展开更多
High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compress...High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.展开更多
This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to reali...This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.展开更多
An optical phased array(OPA),the most promising non-mechanical beam steering technique,has great potential for solid-state light detection and ranging systems,holographic imaging,and free-space optical communications....An optical phased array(OPA),the most promising non-mechanical beam steering technique,has great potential for solid-state light detection and ranging systems,holographic imaging,and free-space optical communications.A high quality beam with low sidelobes is crucial for long-distance free-space transmission and detection.However,most previously reported OPAs suffer from high sidelobe levels,and few efforts are devoted to reducing sidelobe levels in both azimuthal(φ)and polar(θ)directions.To solve this issue,we propose a Y-splitter-assisted cascaded coupling scheme to realize Gaussian power distribution in the azimuthal direction,which overcomes the bottleneck in the conventional cascaded coupling scheme and significantly increases the sidelobe suppression ratio(SLSR)in theφdirection from 20 to 66 dB in theory for a 120-channel OPA.Moreover,we designed an apodized grating emitter to realize Gaussian power distribution in the polar direction to increase the SLSR.Based on both designs,we experimentally demonstrated a 120-channel OPA with dual-Gaussian power distribution in bothφandθdirections.The SLSRs inφandθdirections are measured to be 15.1 d B and 25 dB,respectively.Furthermore,we steer the beam to the maximum field of view of 25°×13.2°with a periodic 2λpitch(3.1μm).The maximum total power consumption is only 0.332 W with a thermo-optic efficiency of 2.7 m W∕π.展开更多
The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m s...The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m series to do non-coherent integration. It is indicated that the power in- creasing times of larger target sidelobe is less than the power increasing times of smaller target main- lobe because of the larger target' s pseudo-randomness. Smaller target is integrated from larger tar- get sidelobe, which strengthens the detection capability of radar for smaller targets. According to the sidelobes distributing characteristic, a method is presented in this paper to remove the estimated sidelobes mean value for signal detection after non-coherent integration. Simulation results present that the SNR of small target can be improved approximately 6. 5 dB by the proposed method.展开更多
N-continuous orthogonal frequency division multiplexing(NC-OFDM) is an outstanding method to suppress sidelobe for baseband OFDM signals in future 5G wireless communications.However,the precoder of NCOFDM usually caus...N-continuous orthogonal frequency division multiplexing(NC-OFDM) is an outstanding method to suppress sidelobe for baseband OFDM signals in future 5G wireless communications.However,the precoder of NCOFDM usually causes severe interference and high complexity.To alleviate these problems,this paper proposes an improved time-domain N-continuous OFDM(TD-NC-OFDM) by optimizing the smooth signal,which is the linear combination of rectangularly pulsed OFDM basis signals truncated by a smooth window.Furthermore,we show that the proposed scheme is with lower transceiver complexity and notable performance gain in signal-tointerference-plus-noise ratio(SINR).Lastly,simulation results show that the proposed low-interference TD-NC-OFDM can achieve similar sidelobe suppression performance,with negligible bit-error rate(BER) degradation,compared to conventional NC-OFDM.展开更多
针对认知雷达具备环境感知的特点,研究了基于干扰先验信息的认知雷达波形设计方法。首先在接收端旁瓣电平和干扰电平相等的约束条件下,根据最小均方误差(Minimum Mean Square Error,MMSE)准则设计了认知雷达波形设计的代价函数,接着利...针对认知雷达具备环境感知的特点,研究了基于干扰先验信息的认知雷达波形设计方法。首先在接收端旁瓣电平和干扰电平相等的约束条件下,根据最小均方误差(Minimum Mean Square Error,MMSE)准则设计了认知雷达波形设计的代价函数,接着利用交替指向法将优化问题进行分解,然后利用拉格朗日(Lagrange)乘子法引入多个辅助变量和KKT最优条件性进行求解,最后通过计算机仿真验证了算法的有效性。仿真结果表明,所提算法能够实现对干扰信号和自身处理旁瓣的均衡抑制,提高了雷达接收处理的动态范围。展开更多
基金supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant No. 053Z170138)
文摘The existing spatially variant apodizations (SVAs) either cannot depress the sidelobes effectively or reduce the energy of the mainlobe.To improve this,a modified SVA (MSVA) is put forward in this paper,which expands the traditional filter from 3-taps to 5-taps and sets relevant parameters according to different sampling rates to get the excellent result that satisfies constrained optimization theory.A method for synthetic aperture radar (SAR) sidelobe control based on MSVA is presented,which applies MSVA to range compression and azimuth compression to control sidelobes.This method which is available for any Nyquist sampling rate can both depress the sidelobes effectively and keep the energy of the mainlobe and the resolution of the image.The method can reduce sidelobe levels more effectively than classical amplitude weighting while maintaining the image resolution,as demonstrated by the result of the experiment.
文摘Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(CX2011B019) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(B110404) supported by Innovation Foundation for Outstanding Postgraduates of National University of Defense Technology,China
文摘High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.
文摘This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.
文摘An optical phased array(OPA),the most promising non-mechanical beam steering technique,has great potential for solid-state light detection and ranging systems,holographic imaging,and free-space optical communications.A high quality beam with low sidelobes is crucial for long-distance free-space transmission and detection.However,most previously reported OPAs suffer from high sidelobe levels,and few efforts are devoted to reducing sidelobe levels in both azimuthal(φ)and polar(θ)directions.To solve this issue,we propose a Y-splitter-assisted cascaded coupling scheme to realize Gaussian power distribution in the azimuthal direction,which overcomes the bottleneck in the conventional cascaded coupling scheme and significantly increases the sidelobe suppression ratio(SLSR)in theφdirection from 20 to 66 dB in theory for a 120-channel OPA.Moreover,we designed an apodized grating emitter to realize Gaussian power distribution in the polar direction to increase the SLSR.Based on both designs,we experimentally demonstrated a 120-channel OPA with dual-Gaussian power distribution in bothφandθdirections.The SLSRs inφandθdirections are measured to be 15.1 d B and 25 dB,respectively.Furthermore,we steer the beam to the maximum field of view of 25°×13.2°with a periodic 2λpitch(3.1μm).The maximum total power consumption is only 0.332 W with a thermo-optic efficiency of 2.7 m W∕π.
基金Supported by the National Natural Science Foundation of China(Youth Science Fund)(61001190)
文摘The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m series to do non-coherent integration. It is indicated that the power in- creasing times of larger target sidelobe is less than the power increasing times of smaller target main- lobe because of the larger target' s pseudo-randomness. Smaller target is integrated from larger tar- get sidelobe, which strengthens the detection capability of radar for smaller targets. According to the sidelobes distributing characteristic, a method is presented in this paper to remove the estimated sidelobes mean value for signal detection after non-coherent integration. Simulation results present that the SNR of small target can be improved approximately 6. 5 dB by the proposed method.
基金financial support of the National S&T Major Project(No.2014ZX03004003)the National Science Foundation of China under Grant number 61671134+1 种基金the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2015D09)the Fundamental Research Funds for the Central Universities(No. ZYGX2015J011) is gratefully acknowledged
文摘N-continuous orthogonal frequency division multiplexing(NC-OFDM) is an outstanding method to suppress sidelobe for baseband OFDM signals in future 5G wireless communications.However,the precoder of NCOFDM usually causes severe interference and high complexity.To alleviate these problems,this paper proposes an improved time-domain N-continuous OFDM(TD-NC-OFDM) by optimizing the smooth signal,which is the linear combination of rectangularly pulsed OFDM basis signals truncated by a smooth window.Furthermore,we show that the proposed scheme is with lower transceiver complexity and notable performance gain in signal-tointerference-plus-noise ratio(SINR).Lastly,simulation results show that the proposed low-interference TD-NC-OFDM can achieve similar sidelobe suppression performance,with negligible bit-error rate(BER) degradation,compared to conventional NC-OFDM.
文摘针对认知雷达具备环境感知的特点,研究了基于干扰先验信息的认知雷达波形设计方法。首先在接收端旁瓣电平和干扰电平相等的约束条件下,根据最小均方误差(Minimum Mean Square Error,MMSE)准则设计了认知雷达波形设计的代价函数,接着利用交替指向法将优化问题进行分解,然后利用拉格朗日(Lagrange)乘子法引入多个辅助变量和KKT最优条件性进行求解,最后通过计算机仿真验证了算法的有效性。仿真结果表明,所提算法能够实现对干扰信号和自身处理旁瓣的均衡抑制,提高了雷达接收处理的动态范围。