As technological innovations in computers begin to advance past their limit (Moore’s law), a new problem arises: What computational device would emerge after the classical supercomputers reach their physical limitati...As technological innovations in computers begin to advance past their limit (Moore’s law), a new problem arises: What computational device would emerge after the classical supercomputers reach their physical limitations? At this moment in time, quantum computers are at their starting stage and there are already some strengths and advantages when compared with modern, classical computers. In its testing period, there are a variety of ways to create a quantum computer by processes such as the trapped-ion and the spin-dot methods. Nowadays, there are many drawbacks with quantum computers such as issues with decoherence and scalability, but many of these issues are easily emended. Nevertheless, the benefits of quantum computers at the moment outweigh the potential drawbacks. These benefits include its use of many properties of quantum mechanics such as quantum superposition, entanglement, and parallelism. Using these basic properties of quantum mechanics, quantum computers are capable of achieving faster computational times for certain problems such as finding prime factors of an integer by using Shor’s algorithm. From the advantages such as faster computing times in certain situations and higher computing powers than classical computers, quantum computers have a high probability to be the future of computing after classical computers hit their peak.展开更多
This research paper analyzes the urgent topic of quantum cybersecurity and the current federal quantum-cyber landscape. Quantum-safe implementations within existing and future Internet of Things infrastructure are dis...This research paper analyzes the urgent topic of quantum cybersecurity and the current federal quantum-cyber landscape. Quantum-safe implementations within existing and future Internet of Things infrastructure are discussed, along with quantum vulnerabilities in public key infrastructure and symmetric cryptographic algorithms. Other relevant non-encryption-specific areas within cybersecurity are similarly raised. The evolution and expansion of cyberwarfare as well as new developments in cyber defense beyond post-quantum cryptography and quantum key distribution are subsequently explored, with an emphasis on public and private sector awareness and vigilance in maintaining strong security posture.展开更多
Shor proposed a polynomial time algorithm for computing the order of one element in a multiplicative group using a quantum computer. Based on Miller’s randomization, he then gave a factorization algorithm. But the al...Shor proposed a polynomial time algorithm for computing the order of one element in a multiplicative group using a quantum computer. Based on Miller’s randomization, he then gave a factorization algorithm. But the algorithm has two shortcomings, the order must be even and the output might be a trivial factor. Actually, these drawbacks can be overcome if the number is an RSA modulus. Applying the special structure of the RSA modulus, an algorithm is presented to overcome the two shortcomings. The new algorithm improves Shor’s algorithm for factoring RSA modulus. The cost of the factorization algorithm almost depends on the calculation of the order of 2 in the multiplication group.展开更多
To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT) within existing technology, this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2~n)), which could re...To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT) within existing technology, this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2~n)), which could realize large-scale QFT using an arbitrary-scale quantum register. By developing a feasible method to realize the control quantum gate Rk, we experimentally realize the 2-bit semiclassical QFT over Z_(2~3) on IBM's quantum cloud computer, which shows the feasibility of the method. Then, we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT, which is mainly due to fewer two-qubit gates in the semiclassical QFT. Furthermore, based on the proposed method, N = 15 is successfully factorized by implementing Shor's algorithm.展开更多
It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. No...It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.展开更多
The present work provides a brief analysis of experimental investigations related to quantum computer creation. The first step to the real quantum creation could be visualization of Shor states. Such visualization is ...The present work provides a brief analysis of experimental investigations related to quantum computer creation. The first step to the real quantum creation could be visualization of Shor states. Such visualization is based on the use of the phenomenon of the secondary wave generated by incident electromagnetic irradiation on the object which undergoes screening. This electromagnetic irradiation under certain conditions can be transformed into waves of other type, for example, surface plazmons. The massif from n quantum objects generating secondary irradiation, in principle, can be considered as a route to materialization on Shor cells. In such a way, a system of q-bites of quantum computer can be realized.展开更多
The objective of this paper concerns at first the motivation and the method of Shor’s algorithm including remarks on quantum computing introducing an algorithmic description of the method.The corner stone of the Shor...The objective of this paper concerns at first the motivation and the method of Shor’s algorithm including remarks on quantum computing introducing an algorithmic description of the method.The corner stone of the Shor’s algorithm is the modular exponentiation that is themost computational component(in time and space).A linear depth unit based on phase estimation is introduced and a description of a generic version of a modular multiplier based on phases is introduced to build block of a gates to efficient modular exponentiation circuit.Our proposal includes numerical experiments achieved on both the IBM simulator using the Qiskit library and on quantum physical optimizers provided by IBM.The shor’s algorithm based on phase estimation succeeds in factoring integer numbers with more than 35 digits using circuits with about 100 qubits.展开更多
文摘As technological innovations in computers begin to advance past their limit (Moore’s law), a new problem arises: What computational device would emerge after the classical supercomputers reach their physical limitations? At this moment in time, quantum computers are at their starting stage and there are already some strengths and advantages when compared with modern, classical computers. In its testing period, there are a variety of ways to create a quantum computer by processes such as the trapped-ion and the spin-dot methods. Nowadays, there are many drawbacks with quantum computers such as issues with decoherence and scalability, but many of these issues are easily emended. Nevertheless, the benefits of quantum computers at the moment outweigh the potential drawbacks. These benefits include its use of many properties of quantum mechanics such as quantum superposition, entanglement, and parallelism. Using these basic properties of quantum mechanics, quantum computers are capable of achieving faster computational times for certain problems such as finding prime factors of an integer by using Shor’s algorithm. From the advantages such as faster computing times in certain situations and higher computing powers than classical computers, quantum computers have a high probability to be the future of computing after classical computers hit their peak.
文摘This research paper analyzes the urgent topic of quantum cybersecurity and the current federal quantum-cyber landscape. Quantum-safe implementations within existing and future Internet of Things infrastructure are discussed, along with quantum vulnerabilities in public key infrastructure and symmetric cryptographic algorithms. Other relevant non-encryption-specific areas within cybersecurity are similarly raised. The evolution and expansion of cyberwarfare as well as new developments in cyber defense beyond post-quantum cryptography and quantum key distribution are subsequently explored, with an emphasis on public and private sector awareness and vigilance in maintaining strong security posture.
文摘Shor proposed a polynomial time algorithm for computing the order of one element in a multiplicative group using a quantum computer. Based on Miller’s randomization, he then gave a factorization algorithm. But the algorithm has two shortcomings, the order must be even and the output might be a trivial factor. Actually, these drawbacks can be overcome if the number is an RSA modulus. Applying the special structure of the RSA modulus, an algorithm is presented to overcome the two shortcomings. The new algorithm improves Shor’s algorithm for factoring RSA modulus. The cost of the factorization algorithm almost depends on the calculation of the order of 2 in the multiplication group.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grant No.61502526)
文摘To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT) within existing technology, this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2~n)), which could realize large-scale QFT using an arbitrary-scale quantum register. By developing a feasible method to realize the control quantum gate Rk, we experimentally realize the 2-bit semiclassical QFT over Z_(2~3) on IBM's quantum cloud computer, which shows the feasibility of the method. Then, we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT, which is mainly due to fewer two-qubit gates in the semiclassical QFT. Furthermore, based on the proposed method, N = 15 is successfully factorized by implementing Shor's algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.61205108)the High Performance Computing(HPC)Foundation of National University of Defense Technology,China
文摘It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.
文摘The present work provides a brief analysis of experimental investigations related to quantum computer creation. The first step to the real quantum creation could be visualization of Shor states. Such visualization is based on the use of the phenomenon of the secondary wave generated by incident electromagnetic irradiation on the object which undergoes screening. This electromagnetic irradiation under certain conditions can be transformed into waves of other type, for example, surface plazmons. The massif from n quantum objects generating secondary irradiation, in principle, can be considered as a route to materialization on Shor cells. In such a way, a system of q-bites of quantum computer can be realized.
文摘The objective of this paper concerns at first the motivation and the method of Shor’s algorithm including remarks on quantum computing introducing an algorithmic description of the method.The corner stone of the Shor’s algorithm is the modular exponentiation that is themost computational component(in time and space).A linear depth unit based on phase estimation is introduced and a description of a generic version of a modular multiplier based on phases is introduced to build block of a gates to efficient modular exponentiation circuit.Our proposal includes numerical experiments achieved on both the IBM simulator using the Qiskit library and on quantum physical optimizers provided by IBM.The shor’s algorithm based on phase estimation succeeds in factoring integer numbers with more than 35 digits using circuits with about 100 qubits.