As one of the greatest inventions in the 20 th century, ultrafast lasers have offered new opportunities in the areas of basic scientific research and industrial manufacturing. Optical modulators are of great importanc...As one of the greatest inventions in the 20 th century, ultrafast lasers have offered new opportunities in the areas of basic scientific research and industrial manufacturing. Optical modulators are of great importance in ultrafast lasers, which directly affect the output laser performances. Over the past decades, significant efforts have been made in the development of compact, controllable, repeatable, as well as integratable optical modulators(i.e., saturable absorbers). In this paper, we review the fundamentals of the most widely studied saturable absorbers, including semiconductor saturable absorber mirrors and low-dimensional nanomaterials. Then, different fabrication technologies for saturable absorbers and their ultrafast laser applications in a wide wavelength range are illustrated. Furthermore, challenges and perspectives for the future development of saturable absorbers are discussed and presented. The development of ultrafast lasers together with the continuous exploration of reliable saturable absorbers will open up new directions for the mass production of the nextgeneration optoelectronic devices.展开更多
基金supported by the National Natural Science Foundation of China (Nos.61905148,61775146,and 12074264)the Shenzhen Science and Technology Project (Nos.JCYJ20190808160205460,JCYJ20190808174201658,and JCYJ20190808141011530)。
文摘As one of the greatest inventions in the 20 th century, ultrafast lasers have offered new opportunities in the areas of basic scientific research and industrial manufacturing. Optical modulators are of great importance in ultrafast lasers, which directly affect the output laser performances. Over the past decades, significant efforts have been made in the development of compact, controllable, repeatable, as well as integratable optical modulators(i.e., saturable absorbers). In this paper, we review the fundamentals of the most widely studied saturable absorbers, including semiconductor saturable absorber mirrors and low-dimensional nanomaterials. Then, different fabrication technologies for saturable absorbers and their ultrafast laser applications in a wide wavelength range are illustrated. Furthermore, challenges and perspectives for the future development of saturable absorbers are discussed and presented. The development of ultrafast lasers together with the continuous exploration of reliable saturable absorbers will open up new directions for the mass production of the nextgeneration optoelectronic devices.