Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging enviro...Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering(SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles(MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPsbasedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.展开更多
In the pursuit of advancing molecular sensing through surface-enhanced Raman spectroscopy(SERS),the combination of plasmonic nanoparticles and metal-organic frameworks(MOFs)has emerged as a highly effective approach t...In the pursuit of advancing molecular sensing through surface-enhanced Raman spectroscopy(SERS),the combination of plasmonic nanoparticles and metal-organic frameworks(MOFs)has emerged as a highly effective approach to enhance the sensitivity and selectivity of SERS substrates.However,most prior investigations have predominantly focused on MOF-coated plasmonic nanoparticles in core@shell or layer-by-layer configurations,leaving a notable knowledge gap in exploring alternative configurations.Herein we present a facile method to construct a particle-on-mirror architecture by selectively coating a MOF,zeolitic imidazolate framework-8(ZIF-8),onto the tips of Au nanostars and subsequently depositing the resultant nanoparticles onto a Au film.This design integrates the electric field enhancement at the sharp tips and nanogaps,along with the molecular enrichment function within the porous MOF immobilized at the tips and nanogaps,leading to a substantial boost in the SERS signal intensity.Such a unique SERS platform enables consistent and outstanding SERS performance for analytes of different sizes.This work opens up a promising strategy for constructing multifunctional nanostructures for sensitive SERS detection in real-life scenarios.展开更多
Surface-enhanced Raman scattering(SERS)is a powerful technology for obtaining vibrational information from molecules that present in different chemical or biological environments.This paper presents a 3D SERS substrat...Surface-enhanced Raman scattering(SERS)is a powerful technology for obtaining vibrational information from molecules that present in different chemical or biological environments.This paper presents a 3D SERS substrate based on nanocone forests.The substrates are prepared by using plasma treatment technique,which is a simple,fast and high-throughput approach.The SERS substrate based on nanocone forests exhibits high sensitivity.In the experiment,miRNA with a concentration as low as 10-10 M can be achieved.Meanwhile,the proposed SERS substrate shows a high uniformity over a large area.These experimental results demonstrate great potential of the 3D SERS substrate in wide applications.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 21675171, 21277173)the National Instrument Major Project of China (No. 2012YQ3011105)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China (No. 15XNLD04)the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 17K06ESPCT)
文摘Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering(SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles(MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPsbasedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.
基金supported by Hong Kong Innovation and Technology Commission(Innovation and Technology Support Programme(Seed),No.ITS/176/22)Shenzhen Science and Technology Innovation Commission(No.JSGGKQTD20221101115701006)+1 种基金the University Development Fund(No.UDF01002665)the Program of Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08L101).
文摘In the pursuit of advancing molecular sensing through surface-enhanced Raman spectroscopy(SERS),the combination of plasmonic nanoparticles and metal-organic frameworks(MOFs)has emerged as a highly effective approach to enhance the sensitivity and selectivity of SERS substrates.However,most prior investigations have predominantly focused on MOF-coated plasmonic nanoparticles in core@shell or layer-by-layer configurations,leaving a notable knowledge gap in exploring alternative configurations.Herein we present a facile method to construct a particle-on-mirror architecture by selectively coating a MOF,zeolitic imidazolate framework-8(ZIF-8),onto the tips of Au nanostars and subsequently depositing the resultant nanoparticles onto a Au film.This design integrates the electric field enhancement at the sharp tips and nanogaps,along with the molecular enrichment function within the porous MOF immobilized at the tips and nanogaps,leading to a substantial boost in the SERS signal intensity.Such a unique SERS platform enables consistent and outstanding SERS performance for analytes of different sizes.This work opens up a promising strategy for constructing multifunctional nanostructures for sensitive SERS detection in real-life scenarios.
文摘Surface-enhanced Raman scattering(SERS)is a powerful technology for obtaining vibrational information from molecules that present in different chemical or biological environments.This paper presents a 3D SERS substrate based on nanocone forests.The substrates are prepared by using plasma treatment technique,which is a simple,fast and high-throughput approach.The SERS substrate based on nanocone forests exhibits high sensitivity.In the experiment,miRNA with a concentration as low as 10-10 M can be achieved.Meanwhile,the proposed SERS substrate shows a high uniformity over a large area.These experimental results demonstrate great potential of the 3D SERS substrate in wide applications.