Gold nanoshells (GNSs), consisting of a dielectric core coated with gold, have gained extensive attention as they show readily tunable optical properties and good biocompatibility. As highly sensitive and label-free o...Gold nanoshells (GNSs), consisting of a dielectric core coated with gold, have gained extensive attention as they show readily tunable optical properties and good biocompatibility. As highly sensitive and label-free optical biosensors with wide applications, GNSs have been investigated in many fields including drug delivery, immunoassay, cancer treatment, biological sensing and imaging. Taking advantage of the adjustability of the local surface plasmon resonance (LSPR) and the sensitivity of the surfaceenhanced Raman scattering (SERS) signal of GNSs, we have developed diverse applications including plasmonic biosensors and nanoprobes based on GNSs. In this review we introduce plasmonic and electromagnetic properties and fabrication methods of GNSs. We describe research progress in recent years, and highlight several applications of GNSs developed by our group. Finally we provide a brief assessment of future development of GNSs as plasmonic materials that can be integrated with complementary analytical techniques.展开更多
Gold nanostars(Au NSs)are asymmetric anisotropic nanomaterials with sharp edge structure.As a promising branched nanomaterial,Au NS has excellent plasmonic absorption and scattering properties.In order to tune the pla...Gold nanostars(Au NSs)are asymmetric anisotropic nanomaterials with sharp edge structure.As a promising branched nanomaterial,Au NS has excellent plasmonic absorption and scattering properties.In order to tune the plasmonic photothermal and surface-enhanced Raman scattering(SERS)activity of Au NSs to obtain the desired characteristics,the ffects of reagents on the local surface plasmon resonance(LSPR)bands of Au NSs were studied and the morphology and size were regulated.Nanoparticles with different sharp edges were synthesized to make their local plasmon resonance mode tunable in the visible and near-infrared region.The effects of the number and sharpness of different tips under the control of AgNO3 on the photothermal response of Au NSs and the SERS ac-tivity and their mechanism were discussed in detail.The results show that as the length of the branch tip becomes longer and the sharpness increases,the plasmonic photothermal effect of Au NSs is strengthened,and the photother-mal conversion efficiency is the highest up to 40%when the length of Au NSs is the longest.Au NSs with high SERS activity are used for the Raman detection substrate.Based on this property,the quantitative detection of the pesticide thiram is achieved.展开更多
基金supported by the National Natural Science Foundation of China (90923010)the National Basic Research Program of China (2010CB933902)the Promoting Project for Industrialization of Scientific Research Achievement of Regular Institutions of Higher Education in Jiangsu Province (2009-34)
文摘Gold nanoshells (GNSs), consisting of a dielectric core coated with gold, have gained extensive attention as they show readily tunable optical properties and good biocompatibility. As highly sensitive and label-free optical biosensors with wide applications, GNSs have been investigated in many fields including drug delivery, immunoassay, cancer treatment, biological sensing and imaging. Taking advantage of the adjustability of the local surface plasmon resonance (LSPR) and the sensitivity of the surfaceenhanced Raman scattering (SERS) signal of GNSs, we have developed diverse applications including plasmonic biosensors and nanoprobes based on GNSs. In this review we introduce plasmonic and electromagnetic properties and fabrication methods of GNSs. We describe research progress in recent years, and highlight several applications of GNSs developed by our group. Finally we provide a brief assessment of future development of GNSs as plasmonic materials that can be integrated with complementary analytical techniques.
基金Supported by the National Natural Science Foundation of China(No.11774048)the"111"Project of China(No.B13013).
文摘Gold nanostars(Au NSs)are asymmetric anisotropic nanomaterials with sharp edge structure.As a promising branched nanomaterial,Au NS has excellent plasmonic absorption and scattering properties.In order to tune the plasmonic photothermal and surface-enhanced Raman scattering(SERS)activity of Au NSs to obtain the desired characteristics,the ffects of reagents on the local surface plasmon resonance(LSPR)bands of Au NSs were studied and the morphology and size were regulated.Nanoparticles with different sharp edges were synthesized to make their local plasmon resonance mode tunable in the visible and near-infrared region.The effects of the number and sharpness of different tips under the control of AgNO3 on the photothermal response of Au NSs and the SERS ac-tivity and their mechanism were discussed in detail.The results show that as the length of the branch tip becomes longer and the sharpness increases,the plasmonic photothermal effect of Au NSs is strengthened,and the photother-mal conversion efficiency is the highest up to 40%when the length of Au NSs is the longest.Au NSs with high SERS activity are used for the Raman detection substrate.Based on this property,the quantitative detection of the pesticide thiram is achieved.