期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的图像着色 被引量:6
1
作者 徐中辉 吕维帅 《电子技术应用》 2018年第10期19-22,共4页
图像着色的目标是为灰度图像的每一个像素分配颜色,它是图像处理领域的热点问题。以U-Net为主线网络,结合深度学习和卷积神经网络设计了一个全自动的着色网络模型。在该模型中,支线使用卷积神经网络SEInception-ResNet-v2作为高水平的... 图像着色的目标是为灰度图像的每一个像素分配颜色,它是图像处理领域的热点问题。以U-Net为主线网络,结合深度学习和卷积神经网络设计了一个全自动的着色网络模型。在该模型中,支线使用卷积神经网络SEInception-ResNet-v2作为高水平的特征提取器,提取图像的全局信息,同时在网络中使用PoLU(Power Linear Unit)函数替代线性整流函数(ReLU)。实验结果证明此着色网络模型能够对灰度图像进行有效的着色。 展开更多
关键词 着色 卷积神经网络 深度学习 senet模块 PoLU
下载PDF
用于颈部超声图像的SED-UNet分割方法研究
2
作者 刘明珠 付聪 +1 位作者 宋诗杰 赵首博 《哈尔滨理工大学学报》 CAS 北大核心 2024年第2期7-15,共9页
超声图像作为目前常用的医疗诊断手段之一,人工判读超声图像很大程度上依赖于医生主观经验知识,耗时耗力,难以满足快速、批量的临床诊断需求,因此提出了一种基于深度学习和可变形卷积U-Net的图像分割模型SED-UNet。用可变形卷积结合BN和... 超声图像作为目前常用的医疗诊断手段之一,人工判读超声图像很大程度上依赖于医生主观经验知识,耗时耗力,难以满足快速、批量的临床诊断需求,因此提出了一种基于深度学习和可变形卷积U-Net的图像分割模型SED-UNet。用可变形卷积结合BN和Dropout层对原网络的卷积运算进行优化改进,提升网络收敛性、增加网络模型的鲁棒性、提升模型的训练效率,用SENet模块在解码阶段的跳跃连接处进行优化改进,提升分割准确率,进而构建适用于颈部超声图像分割的卷积神经网络模型。测试结果表明,提出的SED-UNet模型在颈部超声图像的自动分割方面性能良好,F1系数、精确率、MIoU参数相比传统U-Net结构分别提升了3.94%、7.61%、7.15%,从客观评价指标上达到了较好的分割效果。 展开更多
关键词 senet模块 U-Net 可变形卷积 图像分割
下载PDF
融合注意力机制的输电部件及缺陷检测模型 被引量:1
3
作者 高伟 董云云 +1 位作者 刘军 张兴忠 《计算机工程与设计》 北大核心 2023年第3期929-936,共8页
针对输电线路的多目标识别和缺陷检测中的错检和漏检等问题,提出SE-Faster RCNN模型。在Faster RCNN模型的基础上,将SENet模块嵌入到ResNet模型中,提取关键特征;优化候选框的生成方案;提出基于面积的非极大值抑制算法。通过微调U-Net模... 针对输电线路的多目标识别和缺陷检测中的错检和漏检等问题,提出SE-Faster RCNN模型。在Faster RCNN模型的基础上,将SENet模块嵌入到ResNet模型中,提取关键特征;优化候选框的生成方案;提出基于面积的非极大值抑制算法。通过微调U-Net模型的数据增广方法,构建样本量为23327的数据集,达到91.37%的检测mAP。实验结果表明,提出模型满足输电线路多目标识别和故障检测的鲁棒性和准确性要求。 展开更多
关键词 senet模块 Faster RCNN模型 基于面积的非极大值抑制(Aera-NMS)算法 无人机巡检 数据增广 SE-Faster RCNN模型 区域生成网络
下载PDF
基于改进Faster R-CNN绪下茧形态识别与计数方法的研究 被引量:2
4
作者 杨青青 邵铁锋 +1 位作者 孙卫红 梁曼 《中国计量大学学报》 2023年第2期224-230,240,共8页
目的:为解决解舒试验过程中绪下茧人工识别与计数劳动强度大等问题,提出一种基于改进Faster R-CNN绪下茧形态识别与计数方法。方法:首先,根据解舒试验过程中绪下茧呈现的不同形态,将绪下茧分为新茧、中茧、薄茧3种。采集绪下茧图像,构... 目的:为解决解舒试验过程中绪下茧人工识别与计数劳动强度大等问题,提出一种基于改进Faster R-CNN绪下茧形态识别与计数方法。方法:首先,根据解舒试验过程中绪下茧呈现的不同形态,将绪下茧分为新茧、中茧、薄茧3种。采集绪下茧图像,构建数据集,使用ResNet50残差网络作为Faster R-CNN的特征提取网络,提取3种绪下茧形态图像特征;其次,调整区域建议网络(RPN)中锚点(Anchor)的比例,使检测结果中的目标矩形框更加精确;再次,将SENet注意力模块加入到特征提取网络中;最后,在形态识别的基础上,统计绪下茧数量。结果:改进算法训练的模型对绪下茧的3种形态的平均准确率达到了86.37%,召回率达到了90.3%。检测的平均速度0.17 s/幅。结论:该算法满足绪下茧形态识别与计数的要求。 展开更多
关键词 解舒试验 Faster R-CNN算法 senet注意力模块 绪下茧识别与计数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部