In this paper, a QP-free feasible method with piecewise NCP functions is proposed for nonlinear inequality constrained optimization problems. The new NCP functions are piecewise linear-rational, regular pseudo-smooth...In this paper, a QP-free feasible method with piecewise NCP functions is proposed for nonlinear inequality constrained optimization problems. The new NCP functions are piecewise linear-rational, regular pseudo-smooth and have nice properties. This method is based on the solutions of linear systems of equation reformulation of KKT optimality conditions, by using the piecewise NCP functions. This method is implementable and globally convergent without assuming the strict complementarity condition, the isolatedness of accumulation points. Purr thermore, the gradients of active constraints are not requested to be linearly independent. The submatrix which may be obtained by quasi-Newton methods, is not requested to be uniformly positive definite. Preliminary numerical results indicate that this new QP-free method is quite promising.展开更多
First-order proximal methods that solve linear and bilinear elliptic optimal control problems with a sparsity cost functional are discussed. In particular, fast convergence of these methods is proved. For benchmarking...First-order proximal methods that solve linear and bilinear elliptic optimal control problems with a sparsity cost functional are discussed. In particular, fast convergence of these methods is proved. For benchmarking purposes, inexact proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of proximal schemes applied to infinite-dimensional elliptic optimal control problems and to validate the theoretical estimates.展开更多
We propose an inexact affine scaling Levenberg-Marquardt method for solving bound-constrained semismooth equations under the local error bound assumption which is much weaker than the standard nonsingularity condition...We propose an inexact affine scaling Levenberg-Marquardt method for solving bound-constrained semismooth equations under the local error bound assumption which is much weaker than the standard nonsingularity condition. The affine scaling Levenberg-Marquardt equation is based on a minimization of the squared Euclidean norm of linearized model adding a quadratic affine scaling matrix to find a solution which belongs to the bounded constraints on variable. The global convergence and the superlinear convergence rate are proved.Numerical results show that the new algorithm is efficient.展开更多
The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies...The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies chosen by all other players. This problem has been used to model various problems in applications. However, the convergent solution algorithms are extremely scare in the literature. In this paper, we present an incremental penalty method for the GNEP, and show that a solution of the GNEP can be found by solving a sequence of smooth NEPs. We then apply the semismooth Newton method with Armijo line search to solve latter problems and provide some results of numerical experiments to illustrate the proposed approach.展开更多
Tensor complementarity problem (TCP) is a special kind of nonlinear complementarity problem (NCP). In this paper, we introduce a new class of structure tensor and give some examples. By transforming the TCP to the sys...Tensor complementarity problem (TCP) is a special kind of nonlinear complementarity problem (NCP). In this paper, we introduce a new class of structure tensor and give some examples. By transforming the TCP to the system of nonsmooth equations, we develop a semismooth Newton method for the tensor complementarity problem. We prove the monotone convergence theorem for the proposed method under proper conditions.展开更多
We propose a new two-phase method for reconstruction of blurred im-ages corrupted by impulse noise.In the first phase,we use a noise detector to iden-tify the pixels that are contaminated by noise,and then,in the seco...We propose a new two-phase method for reconstruction of blurred im-ages corrupted by impulse noise.In the first phase,we use a noise detector to iden-tify the pixels that are contaminated by noise,and then,in the second phase,we reconstruct the noisy pixels by solving an equality constrained total variation mini-mization problem that preserves the exact values of the noise-free pixels.For images that are only corrupted by impulse noise(i.e.,not blurred)we apply the semismooth Newton’s method to a reduced problem,and if the images are also blurred,we solve the equality constrained reconstruction problem using a first-order primal-dual algo-rithm.The proposed model improves the computational efficiency(in the denoising case)and has the advantage of being regularization parameter-free.Our numerical results suggest that the method is competitive in terms of its restoration capabilities with respect to the other two-phase methods.展开更多
In this paper,we provide a finitely terminated yet efficient approach to compute the Euclidean projection onto the ordered weightedℓ_(1)(OWL1)norm ball.In particular,an efficient semismooth Newton method is proposed f...In this paper,we provide a finitely terminated yet efficient approach to compute the Euclidean projection onto the ordered weightedℓ_(1)(OWL1)norm ball.In particular,an efficient semismooth Newton method is proposed for solving the dual of a reformulation of the original projection problem.Global and local quadratic convergence results,as well as the finite termination property,of the algorithm are proved.Numerical comparisons with the two best-known methods demonstrate the efficiency of our method.In addition,we derive the generalized Jacobian of the studied projector which,we believe,is crucial for the future designing of fast second-order nonsmooth methods for solving general OWL1 norm constrained problems.展开更多
This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original va...This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original variables and Lagrange multipliers.Without strict complementarity,the convergence of the method is studied by means of theories of semismooth analysis under the linear independence constraint qualification and strong second order sufficient condition.At last,numerical results are reported to show the performance of the proposed method.展开更多
In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalit...In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalities.Then a smoothing Newton-like method is proposed for solving the reformulated system,which only needs to solve one system of linear equations and to perform one line search at each iteration. The global and local quadratic convergence are studied under appropriate assumptions. Numerical examples show that the new approach is effective.展开更多
This paper develops and analyzes multigrid semismooth Newton methods for a class of inequality-constrained optimization problems in function space which are motivated by and include linear elastic contact problems of ...This paper develops and analyzes multigrid semismooth Newton methods for a class of inequality-constrained optimization problems in function space which are motivated by and include linear elastic contact problems of Signorini type. We show that after a suitable Moreau-Yosida type regularization of the problem superlinear local convergence is obtained for a class of semismooth Newton methods. In addition, estimates for the order of tile error introduced by the regularization are derived. The main part of the paper is devoted to the analysis of a multilevel preconditioner for the semismooth Newton system. We prove a rigorous bound for the contraction rate of the multigrid cycle which is robust with respect to sufficiently small regularization parameters and the number of grid levels. Moreover, it applies to adaptively refined grids. The paper concludes with numerical results.展开更多
In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm...In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm, and then use the final point in the first stage as a new initial point to turn to a projected semismooth asymptotically newton method for fast convergence.展开更多
The conditional quadratic semidefinite programming(cQSDP)refers to a class of matrix optimization problems whose matrix variables are required to be positive semidefinite on a subspace,and the objectives are quadratic...The conditional quadratic semidefinite programming(cQSDP)refers to a class of matrix optimization problems whose matrix variables are required to be positive semidefinite on a subspace,and the objectives are quadratic.The chief purpose of this paper is to focus on two primal examples of cQSDP:the problem of matrix completion/approximation on a subspace and the Euclidean distance matrix problem.For the latter problem,we review some classical contributions and establish certain links among them.Moreover,we develop a semismooth Newton method for a special class of cQSDP and establish its quadratic convergence under the condition of constraint nondegeneracy.We also include an application in calibrating the correlation matrix in Libor market models.We hope this work will stimulate new research in cQSDP.展开更多
In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficie...In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficient conditions for ensuring the quadratic growth conditions of a class of constrained convex matrix optimization problems regularized by nonsmooth spectral functions.Under a mild quadratic growth condition on the dual of cMOP,we further discussed the R-superlinear convergence of the Karush-Kuhn-Tucker(KKT)residuals of the sequence generated by the augmented Lagrangian methods(ALM)for solving convex matrix optimization problems.Implementation details of the ALM for solving core convex matrix optimization problems are also provided.展开更多
In this work,we present probabilistic local convergence results for a stochastic semismooth Newton method for a class of stochastic composite optimization problems involving the sum of smooth nonconvex and nonsmooth c...In this work,we present probabilistic local convergence results for a stochastic semismooth Newton method for a class of stochastic composite optimization problems involving the sum of smooth nonconvex and nonsmooth convex terms in the objective function.We assume that the gradient and Hessian information of the smooth part of the objective function can only be approximated and accessed via calling stochastic firstand second-order oracles.The approach combines stochastic semismooth Newton steps,stochastic proximal gradient steps and a globalization strategy based on growth conditions.We present tail bounds and matrix concentration inequalities for the stochastic oracles that can be utilized to control the approximation errors via appropriately adjusting or increasing the sampling rates.Under standard local assumptions,we prove that the proposed algorithm locally turns into a pure stochastic semismooth Newton method and converges r-linearly or r-superlinearly with high probability.展开更多
In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a spa...In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.展开更多
基金supported by the Natural science Foundation of China(10371089,10571137)
文摘In this paper, a QP-free feasible method with piecewise NCP functions is proposed for nonlinear inequality constrained optimization problems. The new NCP functions are piecewise linear-rational, regular pseudo-smooth and have nice properties. This method is based on the solutions of linear systems of equation reformulation of KKT optimality conditions, by using the piecewise NCP functions. This method is implementable and globally convergent without assuming the strict complementarity condition, the isolatedness of accumulation points. Purr thermore, the gradients of active constraints are not requested to be linearly independent. The submatrix which may be obtained by quasi-Newton methods, is not requested to be uniformly positive definite. Preliminary numerical results indicate that this new QP-free method is quite promising.
文摘First-order proximal methods that solve linear and bilinear elliptic optimal control problems with a sparsity cost functional are discussed. In particular, fast convergence of these methods is proved. For benchmarking purposes, inexact proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of proximal schemes applied to infinite-dimensional elliptic optimal control problems and to validate the theoretical estimates.
基金Supported by National Natural Science Foundation of China(No.11571074)Scientific Research Fund of Hunan Provincial Education Department(No.18A351,17C0393)Natural Science Foundation of Hunan Province(No.2019JJ50105)
文摘We propose an inexact affine scaling Levenberg-Marquardt method for solving bound-constrained semismooth equations under the local error bound assumption which is much weaker than the standard nonsingularity condition. The affine scaling Levenberg-Marquardt equation is based on a minimization of the squared Euclidean norm of linearized model adding a quadratic affine scaling matrix to find a solution which belongs to the bounded constraints on variable. The global convergence and the superlinear convergence rate are proved.Numerical results show that the new algorithm is efficient.
文摘The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies chosen by all other players. This problem has been used to model various problems in applications. However, the convergent solution algorithms are extremely scare in the literature. In this paper, we present an incremental penalty method for the GNEP, and show that a solution of the GNEP can be found by solving a sequence of smooth NEPs. We then apply the semismooth Newton method with Armijo line search to solve latter problems and provide some results of numerical experiments to illustrate the proposed approach.
文摘Tensor complementarity problem (TCP) is a special kind of nonlinear complementarity problem (NCP). In this paper, we introduce a new class of structure tensor and give some examples. By transforming the TCP to the system of nonsmooth equations, we develop a semismooth Newton method for the tensor complementarity problem. We prove the monotone convergence theorem for the proposed method under proper conditions.
基金The work of Y.Dong is supported by Advanced Grant No.291405 from the European Research Council.
文摘We propose a new two-phase method for reconstruction of blurred im-ages corrupted by impulse noise.In the first phase,we use a noise detector to iden-tify the pixels that are contaminated by noise,and then,in the second phase,we reconstruct the noisy pixels by solving an equality constrained total variation mini-mization problem that preserves the exact values of the noise-free pixels.For images that are only corrupted by impulse noise(i.e.,not blurred)we apply the semismooth Newton’s method to a reduced problem,and if the images are also blurred,we solve the equality constrained reconstruction problem using a first-order primal-dual algo-rithm.The proposed model improves the computational efficiency(in the denoising case)and has the advantage of being regularization parameter-free.Our numerical results suggest that the method is competitive in terms of its restoration capabilities with respect to the other two-phase methods.
基金supported by National Natural Science Foundation of China(Grant No.11901107)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2019QNRC001)+1 种基金the Shanghai Sailing Program(Grant No.19YF1402600)the Science and Technology Commission of Shanghai Municipality Project(Grant No.19511120700).
文摘In this paper,we provide a finitely terminated yet efficient approach to compute the Euclidean projection onto the ordered weightedℓ_(1)(OWL1)norm ball.In particular,an efficient semismooth Newton method is proposed for solving the dual of a reformulation of the original projection problem.Global and local quadratic convergence results,as well as the finite termination property,of the algorithm are proved.Numerical comparisons with the two best-known methods demonstrate the efficiency of our method.In addition,we derive the generalized Jacobian of the studied projector which,we believe,is crucial for the future designing of fast second-order nonsmooth methods for solving general OWL1 norm constrained problems.
基金Supported by the National Natural Science Foundation of China(No.11671183)the Fundamental Research Funds for the Central Universities(No.2018IB016,2019IA004,No.2019IB010)
文摘This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original variables and Lagrange multipliers.Without strict complementarity,the convergence of the method is studied by means of theories of semismooth analysis under the linear independence constraint qualification and strong second order sufficient condition.At last,numerical results are reported to show the performance of the proposed method.
基金supported by Guangdong Provincial Zhujiang Scholar Award Project,National Science Foundation of China(10671163,10871031)the National Basic Research Program under the Grant 2005CB321703Scientific Research Fund of Hunan Provincial Education Department(06A069,06C824)
文摘In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalities.Then a smoothing Newton-like method is proposed for solving the reformulated system,which only needs to solve one system of linear equations and to perform one line search at each iteration. The global and local quadratic convergence are studied under appropriate assumptions. Numerical examples show that the new approach is effective.
文摘This paper develops and analyzes multigrid semismooth Newton methods for a class of inequality-constrained optimization problems in function space which are motivated by and include linear elastic contact problems of Signorini type. We show that after a suitable Moreau-Yosida type regularization of the problem superlinear local convergence is obtained for a class of semismooth Newton methods. In addition, estimates for the order of tile error introduced by the regularization are derived. The main part of the paper is devoted to the analysis of a multilevel preconditioner for the semismooth Newton system. We prove a rigorous bound for the contraction rate of the multigrid cycle which is robust with respect to sufficiently small regularization parameters and the number of grid levels. Moreover, it applies to adaptively refined grids. The paper concludes with numerical results.
文摘In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm, and then use the final point in the first stage as a new initial point to turn to a projected semismooth asymptotically newton method for fast convergence.
基金supported by the Engineering and Physical Sciences Research Council Grant(No.EP/K007645/1).
文摘The conditional quadratic semidefinite programming(cQSDP)refers to a class of matrix optimization problems whose matrix variables are required to be positive semidefinite on a subspace,and the objectives are quadratic.The chief purpose of this paper is to focus on two primal examples of cQSDP:the problem of matrix completion/approximation on a subspace and the Euclidean distance matrix problem.For the latter problem,we review some classical contributions and establish certain links among them.Moreover,we develop a semismooth Newton method for a special class of cQSDP and establish its quadratic convergence under the condition of constraint nondegeneracy.We also include an application in calibrating the correlation matrix in Libor market models.We hope this work will stimulate new research in cQSDP.
基金Chao Ding’s research was supported by the National Natural Science Foundation of China(Nos.11671387,11531014,and 11688101)Beijing Natural Science Foundation(No.Z190002)+6 种基金Xu-Dong Li’s research was supported by the National Key R&D Program of China(No.2020YFA0711900)the National Natural Science Foundation of China(No.11901107)the Young Elite Scientists Sponsorship Program by CAST(No.2019QNRC001)the Shanghai Sailing Program(No.19YF1402600)the Science and Technology Commission of Shanghai Municipality Project(No.19511120700)Xin-Yuan Zhao’s research was supported by the National Natural Science Foundation of China(No.11871002)the General Program of Science and Technology of Beijing Municipal Education Commission(No.KM201810005004).
文摘In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficient conditions for ensuring the quadratic growth conditions of a class of constrained convex matrix optimization problems regularized by nonsmooth spectral functions.Under a mild quadratic growth condition on the dual of cMOP,we further discussed the R-superlinear convergence of the Karush-Kuhn-Tucker(KKT)residuals of the sequence generated by the augmented Lagrangian methods(ALM)for solving convex matrix optimization problems.Implementation details of the ALM for solving core convex matrix optimization problems are also provided.
基金supported by the Fundamental Research Fund—Shenzhen Research Institute for Big Data Startup Fund(Grant No.JCYJ-AM20190601)the Shenzhen Institute of Artificial Intelligence and Robotics for Society+2 种基金National Natural Science Foundation of China(Grant Nos.11831002 and 11871135)the Key-Area Research and Development Program of Guangdong Province(Grant No.2019B121204008)Beijing Academy of Artificial Intelligence。
文摘In this work,we present probabilistic local convergence results for a stochastic semismooth Newton method for a class of stochastic composite optimization problems involving the sum of smooth nonconvex and nonsmooth convex terms in the objective function.We assume that the gradient and Hessian information of the smooth part of the objective function can only be approximated and accessed via calling stochastic firstand second-order oracles.The approach combines stochastic semismooth Newton steps,stochastic proximal gradient steps and a globalization strategy based on growth conditions.We present tail bounds and matrix concentration inequalities for the stochastic oracles that can be utilized to control the approximation errors via appropriately adjusting or increasing the sampling rates.Under standard local assumptions,we prove that the proposed algorithm locally turns into a pure stochastic semismooth Newton method and converges r-linearly or r-superlinearly with high probability.
基金supported by National Science Foundation of China No.11171305 and No.91230203 and the work of X.Lu is partially supported by National Science Foundation of China No.11471253,the Fundamental Research Funds for the Central Universities(13lgzd07)and the PSTNS of Zhu Jiang in Guangzhou city(2011J2200099).
文摘In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.