期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5s的安全帽检测算法 被引量:17
1
作者 赵睿 刘辉 +2 位作者 刘沛霖 雷音 李达 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期2050-2061,共12页
针对现有安全帽检测算法难以检测小目标、密集目标等缺点,提出一种基于YOLOv5s的安全帽检测改进算法。采用DenseBlock模块来代替主干网络中的切片结构,提升网络的特征提取能力;在网络颈部检测层加入SE-Net通道注意力模块,引导模型更加... 针对现有安全帽检测算法难以检测小目标、密集目标等缺点,提出一种基于YOLOv5s的安全帽检测改进算法。采用DenseBlock模块来代替主干网络中的切片结构,提升网络的特征提取能力;在网络颈部检测层加入SE-Net通道注意力模块,引导模型更加关注小目标信息的通道特征,以提升对小目标的检测性能;对数据增强方式进行改进,丰富小尺度样本数据集;增加一个检测层以便能更好地学习密集目标的多级特征,从而提高模型应对复杂密集场景的能力。此外,构建一个面向密集目标及远距离小目标的安全帽检测数据集。实验结果表明:所提改进算法比原始YOLOv5s算法平均精确率(mAP@0.5)提升6.57%,比最新的YOLOX-L及PP-YOLOv2算法平均精确率分别提升1.05%与1.21%,在密集场景及小目标场景下具有较强的泛化能力。 展开更多
关键词 安全帽检测 YOLOv5s算法 数据增强 DenseBlock模块 se-net注意力模块
下载PDF
基于改进Yolov5l的航空小目标检测算法 被引量:1
2
作者 戴得恩 朱瑞飞 +2 位作者 陈长征 秦磊 马经宇 《计算机工程与设计》 北大核心 2023年第9期2610-2618,共9页
针对航空图像小目标检测存在的检测精度低、误检与漏检严重等问题,提出一种基于改进Yolov5l的航空小目标检测算法(AS-Yolov5)。在Yolov5的主干特征提取网络中引入空洞卷积,使用Transform的Decode模块,在特征融合网络中新增检测头,FPN+PA... 针对航空图像小目标检测存在的检测精度低、误检与漏检严重等问题,提出一种基于改进Yolov5l的航空小目标检测算法(AS-Yolov5)。在Yolov5的主干特征提取网络中引入空洞卷积,使用Transform的Decode模块,在特征融合网络中新增检测头,FPN+PAN特征融合时设置融合权重,输出端采用SE-Net注意力机制,测试时进行多尺寸输入及测试时间增强(TTA)。算法在visdron2021数据集上进行验证,实验结果表明,AS-Yolov5的均值平均精度@0.5(mAP@0.5)为41.0%,较Yolov5l的28.5%提升12.5%,有效提高Yolov5l难以在远距离、暗环境、密集分布和图像模糊的场景下的小目标检测能力。 展开更多
关键词 航空小目标检测 Yolov5l模型 空洞卷积 se-net注意力模块 权重融合 深度学习 目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部