期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
基于SE注意力CycleGAN的蓝印花布单纹样自动生成
1
作者 冉二飞 贾小军 +2 位作者 喻擎苍 谢昊 陈卫彪 《丝绸》 CAS CSCD 北大核心 2024年第1期31-37,共7页
根据蓝印花布纹样的风格特征,文章提出一种端到端的蓝印花布纹样自动生成方法,实现简笔画图像向蓝印花布单纹样的自动迁移。针对蓝印花布的抽象风格和小数据集问题,重新构造CycleGAN生成网络中的编码器和解码器,使用SE(squeeze and exci... 根据蓝印花布纹样的风格特征,文章提出一种端到端的蓝印花布纹样自动生成方法,实现简笔画图像向蓝印花布单纹样的自动迁移。针对蓝印花布的抽象风格和小数据集问题,重新构造CycleGAN生成网络中的编码器和解码器,使用SE(squeeze and excitation)注意力模块和残差模块与原始的卷积模块串联,提高特征提取能力和网络学习能力。同时减少生成网络中转换器的残差块层数,降低过拟合。实验结果表明,基于SE注意力CycleGAN网络方法自动生成的蓝印花布新纹样主观性上更贴合原始风格,与原图更加接近,有助于蓝印花布的数字化传承和创新。 展开更多
关键词 蓝印花布 se注意力 风格迁移 CycleGAN 单纹样 半监督学习 图像生成
下载PDF
SSE-Ship: A SAR Image Ship Detection Model with Expanded Detection Field of View and Enhanced Effective Feature Information
2
作者 Liping Zheng Liang Tan +3 位作者 Liangjun Zhao Feng Ning Bo Xiao Yang Ye 《Open Journal of Applied Sciences》 CAS 2023年第4期562-578,共17页
In this paper, we propose a SAR image ship detection model SSE-Ship that combines image context to extend the detection field of view domain and effectively enhance feature extraction information. This method aims to ... In this paper, we propose a SAR image ship detection model SSE-Ship that combines image context to extend the detection field of view domain and effectively enhance feature extraction information. This method aims to solve the problem of low detection rate in SAR images with ship combination and ship fusion scenes. Firstly, we propose STCSPB network to solve the problem of ship and non-ship object fusion by combining image contextual feature information to distinguish ship and non-ship objects. Secondly, we combine SE Attention to enhance the effective feature information and effectively improve the detection accuracy in combined ship driving scenes. Finally, we conducted extensive experiments on two standard base datasets, SAR-Ship and SSDD, to verify the effectiveness and stability of our proposed method. The experimental results show that the SSE-Ship model has P = 0.950, R = 0.946, mAP_0.5:0.95 = 0.656 and FPS = 50 on the SAR-Ship dataset and mAP_0.5 = 0.964 and R = 0.940 on the SSDD dataset. 展开更多
关键词 Ship Detection Sse-Ship STCSPB se attention
下载PDF
基于改进YOLOv5的小样本水下声呐图像目标检测
3
作者 陈启北 韩路军 陈慧 《邢台职业技术学院学报》 2023年第5期54-59,94,共7页
声纳图像目标检测在水下救援和资源勘探中具有重要意义。传统的声纳目标检测技术存在智能化程度低、鲁棒性差、实时性差、识别精度低等问题。尽管许多基于卷积神经网络的目标检测算法在自然图像中取得了很大的成功。然而,对于水下声纳... 声纳图像目标检测在水下救援和资源勘探中具有重要意义。传统的声纳目标检测技术存在智能化程度低、鲁棒性差、实时性差、识别精度低等问题。尽管许多基于卷积神经网络的目标检测算法在自然图像中取得了很大的成功。然而,对于水下声纳图像来说,海底混响噪声干扰、前景目标区域像素占比低、成像分辨率差等问题对实现准确的水下目标检测提出了相当大的挑战。为了解决这些问题,文章基于YOLOv5目标检测模型提出了一种新的声纳图像目标检测器。首先,在原有Backbone的基础上基于多头注意力机制引入C3MHSA模块和SE注意机制,提高模型的收敛性和提取目标形状和空间有效特征的能力。此外,在Backbone中加入RFB模块,提高网络在高感受野存在的情况下学习重要信息的能力。实验结果表明,改进后的Yolov5网络的mAP@0.5值为98.9%,较原始YOLOv5模型有了全面大幅提升,明显优于现有方法。 展开更多
关键词 水下目标检测 声呐图像 YOLOv5 se注意力
下载PDF
基于YOLOv4的海上目标识别技术研究 被引量:2
4
作者 张坤 罗亚松 刘忠 《兵器装备工程学报》 CSCD 北大核心 2022年第4期211-217,共7页
为实现复杂海况下对水柱和靶球目标的高效检测,提出了以YOLOv4网络模型为基础的改进算法。实验设计了4种方案对模型检测效果进行改进:用K-means聚类算法对锚定框进行优化;在YOLOv4骨干网络中嵌入SE注意力模块提高对小目标的检测能力;使... 为实现复杂海况下对水柱和靶球目标的高效检测,提出了以YOLOv4网络模型为基础的改进算法。实验设计了4种方案对模型检测效果进行改进:用K-means聚类算法对锚定框进行优化;在YOLOv4骨干网络中嵌入SE注意力模块提高对小目标的检测能力;使用基于灰度共生矩阵的海天线检测算法限定检测范围;采用结构相似性检测算法改善视频流检测效果。检测实验证明4种方法对提高网络检测性能均有效果,综合使用4种方法对YOLOv4网络进行改进,在检靶数据集上mAP_(50)值提升了29.9%。 展开更多
关键词 目标识别 YOLOv4 K-MEANS se注意力 GLCM SSIM
下载PDF
基于改进YOLOv4的中小型绝缘子检测 被引量:1
5
作者 李磊 李英娜 赵振刚 《电视技术》 2022年第3期74-82,共9页
为解决中小型绝缘子在检测目标时出现的漏检、错检问题,提出一种改进YOLOv4算法的中小型绝缘子检测方法。首先,通过增加特征融合层、引入SE注意力机制的方式改变YOLOv4网络结构,以发掘更有用的中小型绝缘子特征信息。其次,在模型结尾增... 为解决中小型绝缘子在检测目标时出现的漏检、错检问题,提出一种改进YOLOv4算法的中小型绝缘子检测方法。首先,通过增加特征融合层、引入SE注意力机制的方式改变YOLOv4网络结构,以发掘更有用的中小型绝缘子特征信息。其次,在模型结尾增加负例挖掘模块,抑制复杂背景干扰,提高绝缘子检测准确度。最后,使用改进k-means++算法重新聚类符合中小型绝缘子特征的先验框以加快模型收敛速度。实验结果表明,使用含负例挖掘模块的改进算法进行绝缘子检测,中目标和小目标的平均精度(Average precision,AP)分别达到88.91%和73.09%,对中小型绝缘子检测具有一定的参考价值。 展开更多
关键词 中小型绝缘子 改进YOLOv4 se注意力 负例挖掘
下载PDF
基于多源信号融合和SE-CNN的滚动轴承故障诊断方法 被引量:1
6
作者 杨冠雄 陈曦晖 余红坤 《煤矿机械》 2024年第4期158-160,共3页
针对传统轴承故障诊断方法存在对故障特征不敏感、特征提取不充分以及易受外界环境干扰等问题,提出了一种基于多源信号融合的滚动轴承故障诊断方法。首先为降低单通道信号中的异常值干扰,对多源传感器采集到的原始振动信号开展基于多通... 针对传统轴承故障诊断方法存在对故障特征不敏感、特征提取不充分以及易受外界环境干扰等问题,提出了一种基于多源信号融合的滚动轴承故障诊断方法。首先为降低单通道信号中的异常值干扰,对多源传感器采集到的原始振动信号开展基于多通道特征信息的数据层融合,实现类内故障特征信息互补;然后构建引入SE注意力机制的卷积神经网络(CNN)故障诊断模型,对无效特征信息进行过滤,增强特征提取表征能力,实现滚动轴承故障的精准识别;最后搭建多工况模拟实验台开展了不同干扰工况下的验证。实验结果表明,该方法的平均准确率可达98%以上,在不同程度的干扰工况下均能实现准确的轴承故障类型识别,具有较高的泛化能力。 展开更多
关键词 故障诊断 CNN 信号融合 se注意力机制
下载PDF
基于改进ShuffleNet V2的轻量级防风药材道地性智能识别 被引量:3
7
作者 赵毓 任艺平 +2 位作者 朴欣茹 郑丹阳 李东明 《智慧农业(中英文)》 CSCD 2023年第2期104-114,共11页
[目的/意义]目前,对于防风药材产地和品质的鉴别方法主要是根据其物理或化学特征,其方法需对中药材进行分离提取,存在耗时长,费用高,专业性强,技术难度大等问题,不利于推广应用。随着深度学习的不断发展,其无需人工提取特征、分类精度... [目的/意义]目前,对于防风药材产地和品质的鉴别方法主要是根据其物理或化学特征,其方法需对中药材进行分离提取,存在耗时长,费用高,专业性强,技术难度大等问题,不利于推广应用。随着深度学习的不断发展,其无需人工提取特征、分类精度高等优点被广泛应用在中药材的识别之中。[方法]针对大多数卷积神经网络模型在识别防风药材时计算量大、精度低的问题,本研究提出了一种改进的ShuffieNet V2的轻量级防风道地性识别模型。在不降低网络性能的情况下调整模型架构,减少模型参数量和计算量,用沙漏残差网络(Hourglass Residual Network)代替传统残差网络,同时引入SE(Squeeze-and-Excitation)注意力机制,把具有附加信道注意力的沙漏残差网络嵌入到ShuffleNet V2中,使用SiLU激活函数替换ReLU激活函数,丰富局部特征学习,从而提出轻量化的中药防风道地性识别模型Shuffle-Hourglass SE。为了验证本文所提出模型的有效性,选用VGG16、MobileNet V2、ShuffleNet V2和SqueezeNet V2四种经典网络模型进行对比实验。[结果和讨论]结果表明,本研究提出的模型Shuffle-Hourglass SE获得了最佳性能。在测试集上取得95.32%的准确率、95.28%的召回率,F_(1)分数达到95.27%,测试时间、模型大小为246.34 ms和3.23 M,不仅在传统CNN网络中是最优的,在轻量级网络中也具有较大优势。[结论]本研究所提出的模型在保持较高识别精度的同时占用较少的储存空间,有助于在未来的低性能终端上实现防风道地性的实时诊断。 展开更多
关键词 防风 道地性识别 ShuffleNet V2 se注意力机制 沙漏残差网络 中药材 轻量级模型
下载PDF
基于改进PP-YOLOv2的IC引脚焊接缺陷检测算法研究 被引量:3
8
作者 李娜 王学影 +2 位作者 胡晓峰 郭斌 罗哉 《计量学报》 CSCD 北大核心 2023年第10期1574-1581,共8页
针对IC引脚焊接缺陷因目标尺寸小、引脚密集导致检测精度低等问题,提出一种基于改进PP-YOLOv2的IC引脚焊接缺陷检测算法。通过在骨干网络后引入SE注意力机制,区分特征图中不同通道的重要性,强化目标区域的关键特征,提升网络的特征提取... 针对IC引脚焊接缺陷因目标尺寸小、引脚密集导致检测精度低等问题,提出一种基于改进PP-YOLOv2的IC引脚焊接缺陷检测算法。通过在骨干网络后引入SE注意力机制,区分特征图中不同通道的重要性,强化目标区域的关键特征,提升网络的特征提取能力。使用k-means++聚类算法产生9个聚类中心,以降低因初始聚类中心随机选择不当对检测结果所造成的误差影响。实验结果表明:改进算法对IC引脚焊接短路、缺脚、翘脚、少锡缺陷检测的平均精度分别为97.9%, 96.1%, 96.7%, 95.8%;在阈值为0.5的情况下,平均精度均值达到了96.6%,与YOLOv3、PP-YOLOv2相比,分别提高了14.9%, 5.1%。改进算法对单幅图片的检测时间为0.151 s,满足IC质检的速度要求,为IC引脚焊接缺陷检测提供了参考价值。 展开更多
关键词 计量学 焊接缺陷检测 IC引脚 改进PP-YOLOv2算法 se注意力机制 k-means++ 机器视觉
下载PDF
基于SE-RetinaNet的面向玻璃面板的小尺寸低显著性缺陷检测
9
作者 王为 赵涛 +1 位作者 钟羽中 佃松宜 《组合机床与自动化加工技术》 北大核心 2024年第7期123-127,131,共6页
玻璃面板中的缺陷具有低显著、尺寸小、形态多样、数量少等特点,现有先进目标检测算法难以胜任玻璃面板的质检任务。基于此,提出了SE-RetinaNet—一种面向玻璃面板的小尺寸低显著性的缺陷检测算法。该算法在特征金字塔的顶层和底层引入... 玻璃面板中的缺陷具有低显著、尺寸小、形态多样、数量少等特点,现有先进目标检测算法难以胜任玻璃面板的质检任务。基于此,提出了SE-RetinaNet—一种面向玻璃面板的小尺寸低显著性的缺陷检测算法。该算法在特征金字塔的顶层和底层引入了SE注意力机制和自注意力机制,增强网络对底层小尺寸特征的提取能力并强化顶层网络捕捉特征的长距离依赖关系的能力,同时在网络末端引入定位子网络SE-Regression,通过结合残差块和Inception模块的优点加强了定位的准确度同时防止网络退化。实验结果表明,所提算法能有效检测玻璃面板中各种尺寸的低显著性缺陷,其检测性能优于现有经典目标检测的算法,能够在玻璃面板缺陷检测问题上发挥较好的性能。 展开更多
关键词 小目标检测 玻璃面板缺陷检测 Focal loss se注意力机制 自注意力机制
下载PDF
基于改进YOLOX的钢材表面缺陷检测研究
10
作者 刘毅 蒋三新 《现代电子技术》 北大核心 2024年第9期131-138,共8页
针对目前单阶段目标检测网络YOLOX的特征提取能力不足、特征融合不充分以及钢材表面缺陷检测精度不高等问题,提出一种改进YOLOX的钢材表面缺陷检测算法。首先,在Backbone部分引入改进的SE注意力机制,增添一条最大池化层分支,进行权重融... 针对目前单阶段目标检测网络YOLOX的特征提取能力不足、特征融合不充分以及钢材表面缺陷检测精度不高等问题,提出一种改进YOLOX的钢材表面缺陷检测算法。首先,在Backbone部分引入改进的SE注意力机制,增添一条最大池化层分支,进行权重融合,强化重要的特征通道;其次,在Neck部分引入ASFF模块,充分利用不同尺度的特征,更好地进行特征融合;最后,针对数据集所呈现的特点,将IOU损失函数替换为EIOU损失函数,改善模型定位不准确的问题,提高缺陷检测精度。实验结果表明,改进的YOLOX算法具有良好的检测效果,在NEU⁃DET数据集上的mAP达到了75.66%,相比原始YOLOX算法提高了3.74%,较YOLOv6提升了2.76%,检测精度优于其他主流算法。 展开更多
关键词 YOLOX 单阶段目标检测网络 se注意力机制 ASFF模块 表面缺陷检测 EIOU损失函数
下载PDF
基于改进YOLOv5的贴片电感表面缺陷检测研究
11
作者 陈建春 乔健 +1 位作者 朱子唯 王功伟 《佛山科学技术学院学报(自然科学版)》 CAS 2024年第4期10-18,共9页
为实现贴片电感表面缺陷的快速精准检测,突破目前贴片电感表面缺陷检测速度慢、准确率低的技术难题,在YOLOv5算法基础上,引入SE注意力模块和双向特征融合网络(BiFPN)模型,提出基于注意力机制的特征提取网络结构,分别对不同特征通道赋予... 为实现贴片电感表面缺陷的快速精准检测,突破目前贴片电感表面缺陷检测速度慢、准确率低的技术难题,在YOLOv5算法基础上,引入SE注意力模块和双向特征融合网络(BiFPN)模型,提出基于注意力机制的特征提取网络结构,分别对不同特征通道赋予相应权重信息,使其在特征融合中能够快速传递,进一步提高了贴片电感表面缺陷模型的检测精度;考虑提取网络时无法高效检测出贴片电感的缺陷类型,设计出基于加权双向特征金字塔结构,增强了模型对不同尺度特征信息的表达能力;利用贴片电感表面缺陷检测数据集完成了SE注意力机制和BiFPN网络的消融实验以及目标检测算法的对比实验。结果表明,提出的改进模型平均准确率均值(mAP)达到97.12%较原YOLOv5算法提升了5.87%,检测速度达到40.47FPS,能够满足贴片电感表面缺陷检测的实时性和准确性要求。 展开更多
关键词 缺陷检测 YOLOv5 se注意力模块 BiFPN
下载PDF
改进的DDeepLabV3+语义分割网络
12
作者 蔡思静 汪严昱 《福建理工大学学报》 CAS 2024年第1期95-102,共8页
针对语义分割网络在移动智能化终端上存在参数量大、分割精度不足的问题,提出一种改进的DDeepLabV3+网络算法。首先,采用深度可分离的MobileNet结构作为网络的骨干部分,降低网络的参数量和复杂度,从而有效减少了运行时间。其次,引入网... 针对语义分割网络在移动智能化终端上存在参数量大、分割精度不足的问题,提出一种改进的DDeepLabV3+网络算法。首先,采用深度可分离的MobileNet结构作为网络的骨干部分,降低网络的参数量和复杂度,从而有效减少了运行时间。其次,引入网络的低级特征,实现多尺度信息融合,减少网络下采样引起的空间信息损失。最后,结合注意力机制设计网络ASPP结构,增强特征提取在实验中的利用。优化后的网络结构在保持较高分类准确性的前提下,计算时间显著减少。网络的平均交并比在Cityscapes和Camvid数据集中分别提升了2.37%和2.13%。 展开更多
关键词 语义分割 se注意力机制模块 DeepLabV3+网络
下载PDF
基于改进YOLOv5s小目标检测算法
13
作者 刘艺 吴路路 +1 位作者 邓湘琳 杜欣 《安徽科技学院学报》 2024年第4期69-77,共9页
目的:针对现有目标检测算法进行小目标检测时检测效果不理想、漏检率高的问题,提出一种改进的YOLOv5s检测算法,提升小目标检测效果。方法:在原有模型基础上,引入BottleneckCSP模块并增加大尺度特征融合结构,提升模型小目标特征捕捉能力... 目的:针对现有目标检测算法进行小目标检测时检测效果不理想、漏检率高的问题,提出一种改进的YOLOv5s检测算法,提升小目标检测效果。方法:在原有模型基础上,引入BottleneckCSP模块并增加大尺度特征融合结构,提升模型小目标特征捕捉能力;同时在网络结构中融合SE注意力机制,使得网络自主学习更关注小目标特征通道,增强网络模型对小目标的检测效果。结果:在同一自制小目标检测数据集上进行训练验证,与已有算法比较,能够有效提升YOLOv5s目标检测算法的mAP值和训练收敛速度,拓展小目标检测范围(由原有算法的0.002 5~0.010 0缩小至0.000 8~0.001 4),提高小目标检测性能(平均检测率提升46%)。结论:改进算法能够有效提升小目标的检测能力。 展开更多
关键词 改进YOLOv5s 小目标检测 BottleneckCSP 大尺度特征融合 se注意力机制
下载PDF
基于改进DeepLabv3+与SE注意力机制融合的非结构化道路识别方法
14
作者 金磊 杨晓伟 +3 位作者 张浩 杜勇志 李新鹏 戴春田 《煤炭工程》 北大核心 2024年第7期200-204,共5页
针对露天矿非结构化道路信息无法有效提取或提取精度不高的问题,提出一种基于改进DeepLabv3+网络融合SE注意力机制的露天矿道路识别方法,使用不同采样率的空洞卷积并行采样获取目标图像的高级特征。引入SE注意力模块对采样获取的高级特... 针对露天矿非结构化道路信息无法有效提取或提取精度不高的问题,提出一种基于改进DeepLabv3+网络融合SE注意力机制的露天矿道路识别方法,使用不同采样率的空洞卷积并行采样获取目标图像的高级特征。引入SE注意力模块对采样获取的高级特征和骨干网络提取的低级特征进行特征权衡,以区分不同特征的重要性,提高融合后特征信息的准确性。试验证明,该网络在矿山道路识别中优于其他算法,各项道路识别评价指标均得到提高,可有效识别非结构化的露天矿山道路。 展开更多
关键词 露天矿 道路识别 DeepLabv3+ se注意力机制
下载PDF
智慧校园监控视频系统构建和人脸识别技术
15
作者 郭政华 仲文强 《自动化与仪器仪表》 2024年第3期77-81,86,共6页
为了提高校园监控系统对目标人物的识别准确度,从人脸检测算法与人脸识别算法两个模块对系统进行改进。一方面通过替换检测网络颈部结构中的常规卷积层为DO-Conv,并改进IOU损失函数,提高YOLOv5人脸检测算法的检测精度;另一方面通过引入h... 为了提高校园监控系统对目标人物的识别准确度,从人脸检测算法与人脸识别算法两个模块对系统进行改进。一方面通过替换检测网络颈部结构中的常规卷积层为DO-Conv,并改进IOU损失函数,提高YOLOv5人脸检测算法的检测精度;另一方面通过引入h-swish激活函数与SE注意力机制,提高Mobile Face Net人脸识别算法的识别效果。实验证明,所提改进人脸检测算法,在保持YOLOv5算法较快运算速度的情况下,提高了算法的精确度,检测精度达到91%,综合性能最佳;所提改进人脸识别算法的识别精度同样在保证较小的参数量与较快的运算速度的同时,提高了算法的识别精度,相较于原始Mobile Face Net算法与SphereFace算法,提高了0.11%和0.16%,具有更好的识别结果。基于改进人脸检测算法与改进人脸识别算法搭建的校园安全监控系统,对目标人物的识别准确率较高,平均准确率达到913.31%,符合校园安全监控需求,值得进一步研究和推广。 展开更多
关键词 目标检测 人脸识别 校园安全 监控系统 se注意力机制
原文传递
基于改进PSPNet模型的高分辨率遥感影像林地提取方法研究
16
作者 崔维帅 吴勇 薛雯霞 《科学技术创新》 2024年第4期52-55,共4页
林地在全球生态系统中扮演着至关重要的角色。但传统监督学习方法在林地提取上存在特征选择不精确与未能充分利用像元间的上下文关系等缺陷,导致林地提取精度不理想。针对上述问题,本文提出了一种基于改进PSPNet(Pyramid Scene Parsing ... 林地在全球生态系统中扮演着至关重要的角色。但传统监督学习方法在林地提取上存在特征选择不精确与未能充分利用像元间的上下文关系等缺陷,导致林地提取精度不理想。针对上述问题,本文提出了一种基于改进PSPNet(Pyramid Scene Parsing Network)模型的高分辨率遥感影像林地提取方法。首先,利用高分二号遥感影像与全国第三次土地调查数据,制作高分辨率林地数据集。其次,通过在原始PSPNet模型的基础上加入SE(Squeeze and Excitation)注意力模块,改进PSPNet模型。实验结果表明,本文所改进的PSPNet模型的各项精度指标均优于其他方法,具有较高的提取精度。 展开更多
关键词 深度学习 PSPNet 林地提取 se注意力机制
下载PDF
基于改进USE-Net网络的林木图像语义分割研究 被引量:4
17
作者 戚澍 仉子赫 张博洋 《森林工程》 北大核心 2022年第6期82-87,共6页
为进一步准确定位林木信息、分割林木区域以及实时检测森林资源动态变化,提出一种基于改进USE-Net卷积神经网络的林木图像语义分割模型。该模型在U-Net网络基础上,添加SE注意力模块在网络的过渡层,以显式建模林木特征通道间的相互依赖关... 为进一步准确定位林木信息、分割林木区域以及实时检测森林资源动态变化,提出一种基于改进USE-Net卷积神经网络的林木图像语义分割模型。该模型在U-Net网络基础上,添加SE注意力模块在网络的过渡层,以显式建模林木特征通道间的相互依赖关系,突出特定林木分割特征并抑制无关区域。实验结果表明,U型结构和SE注意力模块的引入使得改进USE-Net网络在处理模糊林木边界等方面具有优势,能够准确分割林木区域,在智能科学管理森林资源领域具有理论价值和应用价值。 展开更多
关键词 林木信息 林木图像语义分割 改进Use-Net 卷积神经网络 se注意力模块
下载PDF
基于改进YOLOv4网络的水表读数识别方法 被引量:4
18
作者 翟娅娅 朱磊 张博 《科学技术与工程》 北大核心 2022年第21期9207-9214,共8页
在远程水表读数自动识别系统中,为减少网络模型参数量,改善受雾化、抖动等干扰的水表复杂场景图像读数识别精度及半字识别问题,提出了一种基于改进YOLOv4网络的水表读数识别方法。首先,利用深度可分离卷积与引入压缩与激发(squeeze-and-... 在远程水表读数自动识别系统中,为减少网络模型参数量,改善受雾化、抖动等干扰的水表复杂场景图像读数识别精度及半字识别问题,提出了一种基于改进YOLOv4网络的水表读数识别方法。首先,利用深度可分离卷积与引入压缩与激发(squeeze-and-excitation, SE)注意力机制的MobileNetv2瓶颈结构,分别替代YOLOv4网络原有的标准卷积和主干网络;其次,利用加权平均非极大值抑制算法改进预测输出头,形成了一种网络模型参数量明显降低但检测精度不下降的改进YOLOv4网络,同时有效改善了对水表读数“半字”识别的漏检和错检问题;最后,基于字符边框定位的水表读数提取方法,实现“半字”准确提取问题。实验结果表明,所提方法与多种网络学习方法相比,模型参数量压缩14.4%以上,读数识别的准确率和召回率对普通场景水表图像分别提升了0.04%和0.05%以上,对受雾化、抖动等干扰的复杂场景水表图像分别提升了0.11%和0.37%以上。 展开更多
关键词 水表读数识别 YOLOv4 深度可分离卷积 se注意力机制 加权平均非极大值抑制
下载PDF
基于改进DeepLabV3p的遥感图像中小目标分割方法
19
作者 金芊芊 罗建 +2 位作者 张晓倩 杨梅 李杨 《成都信息工程大学学报》 2023年第6期673-680,共8页
针对背景信息复杂、目标类别不均衡,遥感图像的中小目标在分割时常出现误检、漏检的问题,提出一种基于DeepLabV3p改进的遥感图像中小目标分割方法。采用ResNet101作为DeepLabV3p的骨干网络,提出多级感受野融合的ASPP模块,以获取更多感受... 针对背景信息复杂、目标类别不均衡,遥感图像的中小目标在分割时常出现误检、漏检的问题,提出一种基于DeepLabV3p改进的遥感图像中小目标分割方法。采用ResNet101作为DeepLabV3p的骨干网络,提出多级感受野融合的ASPP模块,以获取更多感受野;添加SE注意力机制,使模型获得更加精准的通道信息;使用加权的CrossEntropyLoss和LovaszSoftmaxLoss损失函数进行训练,克服数据集目标不均衡的问题;使用全连接条件随机场对预测结果进行图像后处理,对模型输出进行精细化处理。实验结果表明,使用该方法对DLRSD数据集进行分割,mIOU可达到73.22%,与基础网络相比提高了3.78%,有效提高了遥感图像中小目标的分割精度和准确率。 展开更多
关键词 DeepLabV3p 遥感图像 se注意力机制 ASPP CRFs全连接条件随机场 混合损失函数
下载PDF
基于改进Xception的玉米大斑病识别
20
作者 吕盛强 刘建新 +1 位作者 刘伟 王强 《西华大学学报(自然科学版)》 CAS 2023年第1期42-47,共6页
利用无人机平台进行作物病害识别时,由于其拍摄图像分辨率高、目标病斑占比小,现有检测方法需要对图像进行多步骤处理,费时费力且检测效果不稳定。为减少图像处理步骤,提高检测准确率,文章以无人机拍摄图像中玉米大斑病为检测对象,首先... 利用无人机平台进行作物病害识别时,由于其拍摄图像分辨率高、目标病斑占比小,现有检测方法需要对图像进行多步骤处理,费时费力且检测效果不稳定。为减少图像处理步骤,提高检测准确率,文章以无人机拍摄图像中玉米大斑病为检测对象,首先将图像按照一定的比例进行缩小和裁剪,利用2种不同分辨率的图像重构公开数据集;然后对Xception网络进行改进,通过增加密集连接减少病斑特征信息丢失,以提高特征信息融合能力,增加注意力模块调整图像通道,以抑制无效信息;最后训练模型完成对玉米大斑病的识别并进行性能评估。实验结果表明,所提模型识别准确率达到了95.23%,单张图片识别时间减少到了0.5476 s。该模型能够有效检测无人机拍摄的图像中的玉米大斑病。 展开更多
关键词 玉米大斑病识别 改进Xception网络 se注意力机制 小目标识别 图像分类
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部