In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration groun...In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration ground motion records were used in an analysis to isolate the effects of ground motion duration on.The effect of duration was evaluated for observed values of C_(1) by considering six ductility levels,and different damping and post-yield stiffness ratios.A new predictive equation of C_(1) also was developed for long and short duration records.Results of non-linear regression analysis of the current study provide an expression with which to quantify the duration effect.Based on the average values of estimated C_(1) ratios for long duration records divided by C_(1) for a short duration set,it is concluded that the maximum difference between long and short duration records occurs when the damping ratio is 0.3 and the post-yield stiffness ratio is equal to zero.展开更多
The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions.Moreover,not all near-fault ground motion records present...The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions.Moreover,not all near-fault ground motion records present distinct pulses in the velocity time histories.In this paper,the parameterized stochastic model of near-fault ground motion with the strongest energy and pulse occurrence probability is suggested,and the Monte Carlo simulation(MSC)and subset simulation are utilized to calculate the first excursion probability of inelastic single-degree-of-freedom(SDOF)systems subjected to these types of near-fault ground motion models,respectively.Firstly,the influences of variation of stochastic pulse model parameters on structural dynamic reliability with different fundamental periods are explored.It is demonstrated that the variation of pulse period,peak ground velocity and pulse waveform number have significant effects on structural reliability and should not be ignored in reliability analysis.Then,subset simulation is verified to be unbiased and more efficient for computing small reliable probabilities of structures compared to MCS.Finally,the reliable probabilities of the SDOF systems with different fundamental periods subjected to impulsive,non-pulse ground motions and the ground motions with pulse occurrence probability are performed,separately.It is indicated that the ground motion model with the pulse occurrence probability can give a rational estimate on structural reliability.The impulsive and ordinary ground motion models may overestimate and underestimate the reliability of structures with fundamental period much less than the mean pulse period of earthquake ground motions.展开更多
为了确定弹塑性单自由度(single degree of freedom,SDOF)体系地震输入能,分析了中美场地土剪切波速转换关系,将从美国PEER地震记录数据库选取的220条强震记录按中国场地土类型进行分类,基于能量平衡原理,采用归一化方法,建议了一种基...为了确定弹塑性单自由度(single degree of freedom,SDOF)体系地震输入能,分析了中美场地土剪切波速转换关系,将从美国PEER地震记录数据库选取的220条强震记录按中国场地土类型进行分类,基于能量平衡原理,采用归一化方法,建议了一种基于复合强度指标的弹性SDOF体系三段式等效速度谱.分析了5类场地土条件下SDOF体系系统参数对地震输入等效速度谱的影响.研究结果表明:刚度折减系数对等效速度谱无明显影响;延性系数和阻尼比增大均对等效速度谱峰值和下降段衰减速度有削弱作用.综合考虑各类影响因素,通过参数多次拟合,得出弹性SDOF体系归一化等效速度谱峰值段及下降段修正系数,提出了一种适用于我国场地土类型、可直接供设计使用的弹塑性SDOF体系归一化等效速度谱确定方法,并验证了其有效性.展开更多
In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex ...In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex oscillators. Based on the state space theory, a precise recurrence relationship for these complex oscillators is set up; then a delicate general solution of non-classically damped MDOF systems, completely in real value form, is presented in this paper. In the proposed method, no calculation of the matrix exponential function is needed and the algorithm is unconditionally stable. A numerical example is given to demonstrate the validity and efficiency of the proposed method.展开更多
文摘In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration ground motion records were used in an analysis to isolate the effects of ground motion duration on.The effect of duration was evaluated for observed values of C_(1) by considering six ductility levels,and different damping and post-yield stiffness ratios.A new predictive equation of C_(1) also was developed for long and short duration records.Results of non-linear regression analysis of the current study provide an expression with which to quantify the duration effect.Based on the average values of estimated C_(1) ratios for long duration records divided by C_(1) for a short duration set,it is concluded that the maximum difference between long and short duration records occurs when the damping ratio is 0.3 and the post-yield stiffness ratio is equal to zero.
基金supports of the National Natural Science Foundation of China(Grant Nos.51478086 and 11672167)Shandong Province Natural Science Foundation of China(Grant No.ZR2015EL048)are much appreciated.
文摘The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions.Moreover,not all near-fault ground motion records present distinct pulses in the velocity time histories.In this paper,the parameterized stochastic model of near-fault ground motion with the strongest energy and pulse occurrence probability is suggested,and the Monte Carlo simulation(MSC)and subset simulation are utilized to calculate the first excursion probability of inelastic single-degree-of-freedom(SDOF)systems subjected to these types of near-fault ground motion models,respectively.Firstly,the influences of variation of stochastic pulse model parameters on structural dynamic reliability with different fundamental periods are explored.It is demonstrated that the variation of pulse period,peak ground velocity and pulse waveform number have significant effects on structural reliability and should not be ignored in reliability analysis.Then,subset simulation is verified to be unbiased and more efficient for computing small reliable probabilities of structures compared to MCS.Finally,the reliable probabilities of the SDOF systems with different fundamental periods subjected to impulsive,non-pulse ground motions and the ground motions with pulse occurrence probability are performed,separately.It is indicated that the ground motion model with the pulse occurrence probability can give a rational estimate on structural reliability.The impulsive and ordinary ground motion models may overestimate and underestimate the reliability of structures with fundamental period much less than the mean pulse period of earthquake ground motions.
文摘为了确定弹塑性单自由度(single degree of freedom,SDOF)体系地震输入能,分析了中美场地土剪切波速转换关系,将从美国PEER地震记录数据库选取的220条强震记录按中国场地土类型进行分类,基于能量平衡原理,采用归一化方法,建议了一种基于复合强度指标的弹性SDOF体系三段式等效速度谱.分析了5类场地土条件下SDOF体系系统参数对地震输入等效速度谱的影响.研究结果表明:刚度折减系数对等效速度谱无明显影响;延性系数和阻尼比增大均对等效速度谱峰值和下降段衰减速度有削弱作用.综合考虑各类影响因素,通过参数多次拟合,得出弹性SDOF体系归一化等效速度谱峰值段及下降段修正系数,提出了一种适用于我国场地土类型、可直接供设计使用的弹塑性SDOF体系归一化等效速度谱确定方法,并验证了其有效性.
基金Science Foundation of Beijing Key LaboratoryUnder Grant No. EESR2004-4
文摘In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex oscillators. Based on the state space theory, a precise recurrence relationship for these complex oscillators is set up; then a delicate general solution of non-classically damped MDOF systems, completely in real value form, is presented in this paper. In the proposed method, no calculation of the matrix exponential function is needed and the algorithm is unconditionally stable. A numerical example is given to demonstrate the validity and efficiency of the proposed method.