期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于自适应遗传随机共振的滚动轴承微弱故障诊断 被引量:4
1
作者 王丽华 赵晓平 +1 位作者 周子贤 吴家新 《现代电子技术》 北大核心 2019年第20期40-44,共5页
随机共振(SR)能够利用噪声能量增强微弱信号,有效降低了噪声信号对特征提取的影响,针对SR方法参数选择时缺少交互以及提取特征诊断效果缺乏验证的不足,提出自适应遗传随机共振(AGSR)的滚动轴承微弱故障诊断方法。AGSR方法利用遗传算法(... 随机共振(SR)能够利用噪声能量增强微弱信号,有效降低了噪声信号对特征提取的影响,针对SR方法参数选择时缺少交互以及提取特征诊断效果缺乏验证的不足,提出自适应遗传随机共振(AGSR)的滚动轴承微弱故障诊断方法。AGSR方法利用遗传算法(GA)寻找随机共振的最优系统参数,在考虑参数间交互作用的同时对其进一步优化,有效提高了轴承微弱故障特征的提取效果,随后将AGSR方法提取的特征信号输入堆叠自动编码器(SAE),通过反向传播算法多次迭代优化整个SAE网络,最终实现故障诊断。滚动轴承实测数据的检验结果表明,该方法可有效实现滚动轴承早期微弱故障检测。 展开更多
关键词 微弱故障 滚动轴承 随机共振 遗传算法 sae网络 实验验证
下载PDF
An Effective Fault Diagnosis Method for Aero Engines Based on GSA-SAE 被引量:3
2
作者 CUI Jianguo TIAN Yan +4 位作者 CUI Xiao TANG Xiaochu WANG Jinglin JIANG Liying YU Mingyue 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期750-757,共8页
The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefor... The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefore,an effective fault diagnosis method for aero engines based on the gravitational search algorithm and the stack autoencoder(GSA-SAE)is proposed,and the fault diagnosis technology of a turbofan engine is studied.Firstly,the data of 17 parameters,including total inlet air temperature,high-pressure rotor speed,low-pressure rotor speed,turbine pressure ratio,total inlet air temperature of high-pressure compressor and outlet air pressure of high-pressure compressor and so on,are preprocessed,and the fault diagnosis model architecture of SAE is constructed.In order to solve the problem that the best diagnosis effect cannot be obtained due to manually setting the number of neurons in each hidden layer of SAE network,a GSA optimization algorithm for the SAE network is proposed to find and obtain the optimal number of neurons in each hidden layer of SAE network.Furthermore,an optimal fault diagnosis model based on GSA-SAE is established for aero engines.Finally,the effectiveness of the optimal GSA-SAE fault diagnosis model is demonstrated using the practical data of aero engines.The results illustrate that the proposed fault diagnosis method effectively solves the problem of the poor fault diagnosis result because of manually setting the number of neurons in each hidden layer of SAE network,and has good fault diagnosis efficiency.The fault diagnosis accuracy of the GSA-SAE model reaches 98.222%,which is significantly higher than that of SAE,the general regression neural network(GRNN)and the back propagation(BP)network fault diagnosis models. 展开更多
关键词 aero engines fault diagnosis optimization algorithm of gravitational search algorithm(GSA) stack autoencoder(sae)network
下载PDF
基于深度学习与SAE网络的火箭推力下降故障诊断
3
作者 陈海鹏 闫杰 符文星 《载人航天》 CSCD 北大核心 2022年第2期237-243,共7页
针对运载火箭动力系统在发动机推力下降故障诊断中存在的推力下降程度及故障时间测算不精确的问题,提出了一种基于深度学习的故障诊断方法。不同时刻及程度的推力故障下,利用运载火箭六自由度运动学模型生成的过载信息作为故障训练样本... 针对运载火箭动力系统在发动机推力下降故障诊断中存在的推力下降程度及故障时间测算不精确的问题,提出了一种基于深度学习的故障诊断方法。不同时刻及程度的推力故障下,利用运载火箭六自由度运动学模型生成的过载信息作为故障训练样本,采用堆栈自动编码器方法训练网络,利用训练好的网络辨识发动机推力下降程度,带入六自由度仿真模型中可以实现在线故障诊断。数字仿真证实:该方法可以对火箭发动机的不同时刻与不同推力下降程度的推力损失进行故障诊断,与普通神经网络方法相比,精确性更高。 展开更多
关键词 推力下降故障 运载火箭 故障诊断 深度学习 sae网络
下载PDF
基于改进SAE网络的自然图像分类 被引量:2
4
作者 王恬 仇春春 +1 位作者 俞婧 许金鑫 《信息技术》 2016年第8期1-4,8,共5页
针对自然图像分类算法的精度低以及网络训练耗时过长的实际问题,提出了一种结合卷积自动编码器(Convolutional Auto-Encoders,CAE)的改进堆叠自动编码器(Stacked Auto-encoders,SAE)网络。研究了CAE学习局部特征的能力,并将其作为整个SA... 针对自然图像分类算法的精度低以及网络训练耗时过长的实际问题,提出了一种结合卷积自动编码器(Convolutional Auto-Encoders,CAE)的改进堆叠自动编码器(Stacked Auto-encoders,SAE)网络。研究了CAE学习局部特征的能力,并将其作为整个SAE网络的第一层。在提取初步特征的同时降低输入的维度,解决了网络参数过多,训练过程慢的问题。同时对改进的SAE网络进行微调,缩减训练时间,并提取更有利于分类的图像高层特征。实验结果表明,改进SAE网络对于自然图像的分类具有更好的普适性,可以有效地提高分类准确度,并加快网络训练速度。 展开更多
关键词 图像分类 改进sae网络 卷积自动编码器 微调 最大池化
下载PDF
一种深度小波过程神经网络及在时变信号分类中的应用
5
作者 张振 许少华 《软件》 2020年第2期102-107,共6页
针对多通道非线性时变信号分类问题,提出一种基于稀疏自编码器的深度小波过程神经网络(SAE-DWPNN)。通过构建一种多输入/多输出的小波过程神经网络(WPNN),实现对时变信号的多尺度分解和对过程分布特征的初步提取;通过在WPNN隐层之后叠... 针对多通道非线性时变信号分类问题,提出一种基于稀疏自编码器的深度小波过程神经网络(SAE-DWPNN)。通过构建一种多输入/多输出的小波过程神经网络(WPNN),实现对时变信号的多尺度分解和对过程分布特征的初步提取;通过在WPNN隐层之后叠加一个SAE深度网络,对所提取的信号特征进行高层次的综合和表示,并基于softmax分类器实现对时变信号的分类。SAE-DWPNN将现有过程神经网络扩展为深度结构,同时将深度SAE网络在信息处理机制上扩展到时间域,扩展了两类模型的信息处理能力。该网络可提取多通道时序信号的分布特征及其结构特征,并保持样本特征的多样性,提高了对信号时频特性和结构特征的分析能力。文中分析了SAE-DWPNN的性质,给出了综合训练算法。以基于12导联ECG信号的7种心血管疾病分类诊断为例,实验结果验证了模型和算法的有效性。 展开更多
关键词 时变信号 模式分类 小波过程神经网络 深度sae网络 学习算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部