期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SAC算法的移动机器人智能路径规划 被引量:2
1
作者 杨来义 毕敬 苑海涛 《系统仿真学报》 CAS CSCD 北大核心 2023年第8期1726-1736,共11页
为解决传统的机器人路径规划算法维度高、收敛慢、建模难等问题,提出一种新的路径规划算法。基于深度强化学习SAC(soft actor-critic)算法,旨在解决机器人面对具有静态和动态障碍物的复杂环境时,路径规划表现差的问题。为使机器人快速... 为解决传统的机器人路径规划算法维度高、收敛慢、建模难等问题,提出一种新的路径规划算法。基于深度强化学习SAC(soft actor-critic)算法,旨在解决机器人面对具有静态和动态障碍物的复杂环境时,路径规划表现差的问题。为使机器人快速躲避障碍物且到达目标,设计合理的奖励函数,使用动态的状态归一化和优先级经验技术。为评估该算法性能,构建基于Pygame的仿真环境。将所提算法与近端策略优化(proximal policy optimization,PPO)算法进行比较。实验结果表明:所提算法的累计奖励能够得到显著提高,并且具有更强的鲁棒性。 展开更多
关键词 深度强化学习 路径规划 sac(soft actor-critic)算法 连续奖励函数 移动机器人
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部