Airburn reaction and carboxy reaction result in the excess consumption ofcarbon anode in aluminum electrolysis. To reduce the excess carbon consumption, carbon anode wasdoped with aluminum-containing additives, such a...Airburn reaction and carboxy reaction result in the excess consumption ofcarbon anode in aluminum electrolysis. To reduce the excess carbon consumption, carbon anode wasdoped with aluminum-containing additives, such as Al, Al_4C_3, AlF_3 and Al_2O_3. Their reactivityin air and CO_2 was determined with an isothermal-gravimetric method to study the effect ofaluminum-containing additives on the reactivity in air and CO_2 of carbon anode. Results shown thatthe airburn reactivity at 450℃ and carboxy reactivity at 970℃ of carbon anode both decreased withAl-containing additives adding, while shown a minimum with the amount of Al_4C_3, AlF_3 and Al_2O_3increasing. However, all Al-containing additives increase the airburn reactivity at 550℃ of carbonanodes. Coke yield measurement and XRD examination with aluminum containing additives doped pitchcokes revealed that the effect of Al-containing additives on the airburn reactivity and carboxyreactivity of carbon anode would result from chemical factors and structural factors.展开更多
基金This work is supported by the National Basic Research Program of China (No. G1999064903).
文摘Airburn reaction and carboxy reaction result in the excess consumption ofcarbon anode in aluminum electrolysis. To reduce the excess carbon consumption, carbon anode wasdoped with aluminum-containing additives, such as Al, Al_4C_3, AlF_3 and Al_2O_3. Their reactivityin air and CO_2 was determined with an isothermal-gravimetric method to study the effect ofaluminum-containing additives on the reactivity in air and CO_2 of carbon anode. Results shown thatthe airburn reactivity at 450℃ and carboxy reactivity at 970℃ of carbon anode both decreased withAl-containing additives adding, while shown a minimum with the amount of Al_4C_3, AlF_3 and Al_2O_3increasing. However, all Al-containing additives increase the airburn reactivity at 550℃ of carbonanodes. Coke yield measurement and XRD examination with aluminum containing additives doped pitchcokes revealed that the effect of Al-containing additives on the airburn reactivity and carboxyreactivity of carbon anode would result from chemical factors and structural factors.