Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This r...Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This review focuses on the recent progress related to the design,modification,and construction of Cd S-based photocatalysts with excellent photocatalytic H2 evolution performances.First,the basic concepts and mechanisms of photocatalytic H2 evolution are briefly introduced.Thereafter,the fundamental properties,important advancements,and bottlenecks of Cd S in photocatalytic H2 generation are presented in detail to provide an overview of the potential of this material.Subsequently,various modification strategies adopted for Cd S-based photocatalysts to yield solar H2 are discussed,among which the effective approaches aim at generating more charge carriers,promoting efficient charge separation,boosting interfacial charge transfer,accelerating charge utilization,and suppressing charge-induced self-photocorrosion.The critical factors governing the performance of the photocatalyst and the feasibility of each modification strategy toward shaping future research directions are comprehensively discussed with examples.Finally,the prospects and challenges encountered in developing nanostructured Cd S and Cd S-based nanocomposites in photocatalytic H2 evolution are presented.展开更多
Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompa...Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.展开更多
Global environmental concerns on the toxicity of lead-based piezoelectrics impel the great mass fervor on investigations of lead-free alternatives.Barium titanate(BaTiO3,BT)ceramics,the first discovered perovskite fer...Global environmental concerns on the toxicity of lead-based piezoelectrics impel the great mass fervor on investigations of lead-free alternatives.Barium titanate(BaTiO3,BT)ceramics,the first discovered perovskite ferroelectrics,were widely employed to fabricate dielectric capacitors from 1950s.Since a piezoelectric breakthrough was achieved via chemical modification,intensive researches have been performed embracing lead-free BT-based piezoelectrics and their extensional functionalities.In this review,we encompass the stateof-the-art progress on chemical modification tuning phase structure toward advanced electrical properties in BT-based ceramics.Generally,modulated regularity of cations substitution on phase transition is summarized and clarified.Then,we highlight the common methodologies of phase structure(phase boundary,relaxor phase,room-temperature phase transition,etc.)design for optimizing piezoelectricity,electrostrictive strain,electrocaloric,dielectric energy storage or permittivity performances,and cover the noticeable developments and relevant physical mechanisms.Finally,perspectives and challenges on future research issues are featured.This review proposes to exert the significant guidance and service for material design of BT-based and other lead-free perovskite materials with superior functionalities.展开更多
Research on energy storage technology is a vital part of realizing the dual-carbon strategy at this stage.Aqueous zinc-ion batteries(AZIBs)are favorable competitors in various energy storage devices due to their high ...Research on energy storage technology is a vital part of realizing the dual-carbon strategy at this stage.Aqueous zinc-ion batteries(AZIBs)are favorable competitors in various energy storage devices due to their high energy density,reassuring intrinsic safety,and unique cost advantages.The design of cathode materials is crucial for the large-scale development and application of AZIBs.Vanadium-based oxides with high theoretical capacity,diverse valence states,as well as high electrochemical activity,have been widely used as cathode materials for AZIBs.Unfortunately,there are some obstacles,including low electronic conductivity and sluggish kinetics,hindering their further application in AZIBs.In view of the above,this review will introduce a series of modification methods including morphology design,defect engineering,ingenious combination with conductive materials,and modification of electrolyte and zinc anode according to the intrinsic disadvantage of vanadium oxides and summarize the research progress of various modification methods including zinc storage performance and mechanism.Finally,several reasonable prospects will be proposed to appease the needs of basic research and practical applications according to the current status.展开更多
Recently,zinc and its alloys have been proposed as promising candidates for biodegradable metals(BMs),owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular,bone and gastrointe...Recently,zinc and its alloys have been proposed as promising candidates for biodegradable metals(BMs),owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular,bone and gastrointestinal environments,together with Mg-based and Fe-based BMs.However,there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior.Firstly,the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation.Secondly,for orthopedic applications,the biodegradation rates of Zn-based BMs are relatively slow,resulting in a long-term retention after fulfilling their mission.Meanwhile,excessive Zn2+release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration.In this review,we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications.Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies.Last but not least,the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.展开更多
This study aimed to explore the adsorption performance of sludge-based activated carbon(SBC)towards dissolved organic matters(DOMs)removal from sewage,and investigated the modification effect of different types of che...This study aimed to explore the adsorption performance of sludge-based activated carbon(SBC)towards dissolved organic matters(DOMs)removal from sewage,and investigated the modification effect of different types of chemicals on the structure of synthesized SBC.Waste activated sludge(WAS)was used as a carbon source,and HCl,HNO 3,and Na OH were used as different types of chemicals to modify the SBC.With the aid of chemical activation,the modified SBC showed higher adsorption performances on DOMs removal with maximum adsorption of 29.05 mg/g and second-order constant(k)of 0.1367(L/mol/sec)due to the surface elution of ash and minerals by chemicals.The surface elemental composition of MSBC suggested that the content of C-C and C-O functional groups on the surface of modified sludge-based activated carbon(MSBC)played an important role on the adsorption capacities of MSBC towards DOMs removal in sewage.Additionally,the residual molecular weight of DOMs in sewage was investigated using a 3-dimension fluorescence excitationemission matrix(3 D-EEM)and high-performance size exclusion chromatography(HP-SEC).Results showed that the chemical modification significantly improved the adsorption capacity of MSBC on humic acids(HA)and aromatic proteins(APN),and both of Na OH-MSBC and HCl-MSBC were effective for a wide range of different AMW DOMs removal from sewage,while the HNO 3-MSBC exhibited poorly on AMW organics of 2,617 Da and 409 Da due to the reducing content of macropore.In brief,this study provides reference values for the impact of the chemicals of the activation stage before the SBCs application.展开更多
Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly l...Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly limit their application range.It is widely recognized that surface treatment is the most commonly utilized technique for remarkably improving a substrate’s surface characteristics.Numerous methods have been introduced for the surface treatment of Mg and Mg-based alloys to improve their corrosion behavior and tribological performance.Among these,thermal spray(TS)technology provides several methods for deposition of various functional metallic,ceramic,cermet,or other coatings tailored to particular conditions.Recent researches have shown the tremendous potential for thermal spray coated Mg alloys for biomedical and industrial applications.In this context,the cold spray(CS)method,as a comparatively new TS coating technique,can generate the coating layer using kinetic energy rather than combined thermal and kinetic energies,like the high-velocity oxy-fuel(HVOF)spray method.Moreover,the CS process,as a revolutionary method,is able to repair and refurbish with a faster turnaround time;it also provides solutions that do not require dealing with the thermal stresses that are part of the other repair processes,such as welding or other TS processes using a high-temperature flame.In this review paper,the recently designed coatings that are specifically applied to Mg alloys(primarily for industrial applications)employing various coating processes are reviewed.Because of the increased utilization of CS technology for both 3D printed(additively manufactured)coatings and repair of structurally critical components,the most recent CS methods for the surface treatment,repair,and refurbishment of Mg alloys as well as their benefits and restrictions are then discussed and reviewed in detail.Lastly,the prospects of this field of study are briefly discussed,along with a summary of the presented work.展开更多
The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to ...The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.展开更多
Electrocatalytic chemical oxidation(ECO)is an energy-efficient anodic reaction alternative to the oxygen evolution reaction(OER).ECO lowers the reaction potential and yields higher-value fine chemicals at the anode.Th...Electrocatalytic chemical oxidation(ECO)is an energy-efficient anodic reaction alternative to the oxygen evolution reaction(OER).ECO lowers the reaction potential and yields higher-value fine chemicals at the anode.The catalyst material plays a crucial role in influencing and determining ECO performance.Enhancing catalyst performance encompasses aspects such as activity,stability,selectivity and cost.Nickelbased electrocatalysts have garnered significant attention for their exceptional performance and widespread use in ECO applications.By modifying nickel-based electrocatalysts,the formation of NiOOH active centers can be encouraged.Strategies such as adjusting size and morphology,doping,introducing defects and constructing heterojunctions are advantageous for enhancing performance.Given the rapid advancements in related research fields,it is imperative to comprehend the mechanisms of nickel-based electrocatalysts in ECO and develop innovative catalysts.This article provides an overview of the modification strategies of nickel-based electrocatalysts,as well as their applications and mechanisms in ECO.展开更多
Semiconductor photocatalytic technology has shown great prospects in converting solar energy into chemical energy to mitigate energy crisis and solve environmental pollution problems.The key issue is the development o...Semiconductor photocatalytic technology has shown great prospects in converting solar energy into chemical energy to mitigate energy crisis and solve environmental pollution problems.The key issue is the development of high-efficiency photocatalysts.Various strategies in the state-of-the-art advancements,such as heterostructure construction,heteroatom doping,metal/single atom loading,and defect engineering,have been presented for the graphitic carbon nitride(g-C3N4)-based nanocomposite catalysts to design their surface chemical environments and internal electronic structures to make them more suitable for different photocatalytic applications.In this review,nanoarchitecture design,synthesis methods,photochemical properties,potential photocatalytic applications,and related reaction mechanisms of the modified high-efficiency carbon nitride-based photocatalysts were briefly summarized.The superior photocatalytic performance was identified to be associated with the enhanced visible-light response,fast photoinduced electron-hole separation,efficient charge migration,and increased unsaturated active sites.Moreover,the further advance of the visible-light harvesting and solar-to-energy conversions are proposed.展开更多
基金the National Natural Science Foundation of China(21975084 and 51672089)the Ding Ying Talent Project of South China Agricultural University for their support+1 种基金the Hong Kong Research Grant Council(RGC)General Research Fund GRF1305419 for financial supportthe National Natural Science Foundation of China(51972287 and 51502269)。
文摘Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This review focuses on the recent progress related to the design,modification,and construction of Cd S-based photocatalysts with excellent photocatalytic H2 evolution performances.First,the basic concepts and mechanisms of photocatalytic H2 evolution are briefly introduced.Thereafter,the fundamental properties,important advancements,and bottlenecks of Cd S in photocatalytic H2 generation are presented in detail to provide an overview of the potential of this material.Subsequently,various modification strategies adopted for Cd S-based photocatalysts to yield solar H2 are discussed,among which the effective approaches aim at generating more charge carriers,promoting efficient charge separation,boosting interfacial charge transfer,accelerating charge utilization,and suppressing charge-induced self-photocorrosion.The critical factors governing the performance of the photocatalyst and the feasibility of each modification strategy toward shaping future research directions are comprehensively discussed with examples.Finally,the prospects and challenges encountered in developing nanostructured Cd S and Cd S-based nanocomposites in photocatalytic H2 evolution are presented.
基金Project(AA18242008)supported by the Guangxi Science&Technology Major Project,ChinaProject(HZXYKFKT201904)supported by the Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization,China。
文摘Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.
基金Key Technologies Research and Development Program of Sichuan Province,Grant/Award Number:2018JY0007National Natural Science Foundation of China,Grant/Award Number:51722208。
文摘Global environmental concerns on the toxicity of lead-based piezoelectrics impel the great mass fervor on investigations of lead-free alternatives.Barium titanate(BaTiO3,BT)ceramics,the first discovered perovskite ferroelectrics,were widely employed to fabricate dielectric capacitors from 1950s.Since a piezoelectric breakthrough was achieved via chemical modification,intensive researches have been performed embracing lead-free BT-based piezoelectrics and their extensional functionalities.In this review,we encompass the stateof-the-art progress on chemical modification tuning phase structure toward advanced electrical properties in BT-based ceramics.Generally,modulated regularity of cations substitution on phase transition is summarized and clarified.Then,we highlight the common methodologies of phase structure(phase boundary,relaxor phase,room-temperature phase transition,etc.)design for optimizing piezoelectricity,electrostrictive strain,electrocaloric,dielectric energy storage or permittivity performances,and cover the noticeable developments and relevant physical mechanisms.Finally,perspectives and challenges on future research issues are featured.This review proposes to exert the significant guidance and service for material design of BT-based and other lead-free perovskite materials with superior functionalities.
基金financially supported by the National Nature Science Foundation of China(No.51562006)Guangxi Distinguished Experts Special Fund(No.2019B06)the Innovation Project of Guangxi Graduate Education(No.SC2200000985)。
文摘Research on energy storage technology is a vital part of realizing the dual-carbon strategy at this stage.Aqueous zinc-ion batteries(AZIBs)are favorable competitors in various energy storage devices due to their high energy density,reassuring intrinsic safety,and unique cost advantages.The design of cathode materials is crucial for the large-scale development and application of AZIBs.Vanadium-based oxides with high theoretical capacity,diverse valence states,as well as high electrochemical activity,have been widely used as cathode materials for AZIBs.Unfortunately,there are some obstacles,including low electronic conductivity and sluggish kinetics,hindering their further application in AZIBs.In view of the above,this review will introduce a series of modification methods including morphology design,defect engineering,ingenious combination with conductive materials,and modification of electrolyte and zinc anode according to the intrinsic disadvantage of vanadium oxides and summarize the research progress of various modification methods including zinc storage performance and mechanism.Finally,several reasonable prospects will be proposed to appease the needs of basic research and practical applications according to the current status.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51931001,51901003)the International Cooperation and Exchange project between NSFC(China)and CNR(Italy)(NSFC-CNR Grant No.52011530392)the Open Project of NMPA Key Laboratory for Dental Materials(Grant No.PKUSS20200401).
文摘Recently,zinc and its alloys have been proposed as promising candidates for biodegradable metals(BMs),owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular,bone and gastrointestinal environments,together with Mg-based and Fe-based BMs.However,there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior.Firstly,the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation.Secondly,for orthopedic applications,the biodegradation rates of Zn-based BMs are relatively slow,resulting in a long-term retention after fulfilling their mission.Meanwhile,excessive Zn2+release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration.In this review,we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications.Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies.Last but not least,the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.
基金the National Natural Science Foundation of China(Nos.51678546 and 41630318)the Chinese Universities Scientific Fund for Gradle plan of the China University of Geosciences(Wuhan)the National water pollution control and management technology major projects(Nos.2018ZX07105003 and 2018ZX 07110004)。
文摘This study aimed to explore the adsorption performance of sludge-based activated carbon(SBC)towards dissolved organic matters(DOMs)removal from sewage,and investigated the modification effect of different types of chemicals on the structure of synthesized SBC.Waste activated sludge(WAS)was used as a carbon source,and HCl,HNO 3,and Na OH were used as different types of chemicals to modify the SBC.With the aid of chemical activation,the modified SBC showed higher adsorption performances on DOMs removal with maximum adsorption of 29.05 mg/g and second-order constant(k)of 0.1367(L/mol/sec)due to the surface elution of ash and minerals by chemicals.The surface elemental composition of MSBC suggested that the content of C-C and C-O functional groups on the surface of modified sludge-based activated carbon(MSBC)played an important role on the adsorption capacities of MSBC towards DOMs removal in sewage.Additionally,the residual molecular weight of DOMs in sewage was investigated using a 3-dimension fluorescence excitationemission matrix(3 D-EEM)and high-performance size exclusion chromatography(HP-SEC).Results showed that the chemical modification significantly improved the adsorption capacity of MSBC on humic acids(HA)and aromatic proteins(APN),and both of Na OH-MSBC and HCl-MSBC were effective for a wide range of different AMW DOMs removal from sewage,while the HNO 3-MSBC exhibited poorly on AMW organics of 2,617 Da and 409 Da due to the reducing content of macropore.In brief,this study provides reference values for the impact of the chemicals of the activation stage before the SBCs application.
文摘Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly limit their application range.It is widely recognized that surface treatment is the most commonly utilized technique for remarkably improving a substrate’s surface characteristics.Numerous methods have been introduced for the surface treatment of Mg and Mg-based alloys to improve their corrosion behavior and tribological performance.Among these,thermal spray(TS)technology provides several methods for deposition of various functional metallic,ceramic,cermet,or other coatings tailored to particular conditions.Recent researches have shown the tremendous potential for thermal spray coated Mg alloys for biomedical and industrial applications.In this context,the cold spray(CS)method,as a comparatively new TS coating technique,can generate the coating layer using kinetic energy rather than combined thermal and kinetic energies,like the high-velocity oxy-fuel(HVOF)spray method.Moreover,the CS process,as a revolutionary method,is able to repair and refurbish with a faster turnaround time;it also provides solutions that do not require dealing with the thermal stresses that are part of the other repair processes,such as welding or other TS processes using a high-temperature flame.In this review paper,the recently designed coatings that are specifically applied to Mg alloys(primarily for industrial applications)employing various coating processes are reviewed.Because of the increased utilization of CS technology for both 3D printed(additively manufactured)coatings and repair of structurally critical components,the most recent CS methods for the surface treatment,repair,and refurbishment of Mg alloys as well as their benefits and restrictions are then discussed and reviewed in detail.Lastly,the prospects of this field of study are briefly discussed,along with a summary of the presented work.
文摘The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.
基金supported by the National Natural Science Foundation of China(Nos.52072152 and 51802126)the Jiangsu University Jinshan Professor Fund,the Jiangsu Specially-Appointed Professor Fund,Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials,Zhenjiang“Jinshan Talents”Project 2021,China PostDoctoral Science Foundation(No.2022M721372)+2 种基金“Doctor of Entrepreneurship and Innovation”in Jiangsu Province(No.JSSCBS20221197)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Nos.KYCX22_3645 and KYCX24_3964)Student Research Project of Jiangsu University(No.23A586).
文摘Electrocatalytic chemical oxidation(ECO)is an energy-efficient anodic reaction alternative to the oxygen evolution reaction(OER).ECO lowers the reaction potential and yields higher-value fine chemicals at the anode.The catalyst material plays a crucial role in influencing and determining ECO performance.Enhancing catalyst performance encompasses aspects such as activity,stability,selectivity and cost.Nickelbased electrocatalysts have garnered significant attention for their exceptional performance and widespread use in ECO applications.By modifying nickel-based electrocatalysts,the formation of NiOOH active centers can be encouraged.Strategies such as adjusting size and morphology,doping,introducing defects and constructing heterojunctions are advantageous for enhancing performance.Given the rapid advancements in related research fields,it is imperative to comprehend the mechanisms of nickel-based electrocatalysts in ECO and develop innovative catalysts.This article provides an overview of the modification strategies of nickel-based electrocatalysts,as well as their applications and mechanisms in ECO.
基金supported by the Natural Science Foundation of Anhui Province (No. 1908085ME165)the Anhui Provincial Natural Science Key Foundation (No. 2008085UD07)the Special Funds for the Development of Local Science and Technology from the Central Government in Anhui Province (No. 803214271050)
文摘Semiconductor photocatalytic technology has shown great prospects in converting solar energy into chemical energy to mitigate energy crisis and solve environmental pollution problems.The key issue is the development of high-efficiency photocatalysts.Various strategies in the state-of-the-art advancements,such as heterostructure construction,heteroatom doping,metal/single atom loading,and defect engineering,have been presented for the graphitic carbon nitride(g-C3N4)-based nanocomposite catalysts to design their surface chemical environments and internal electronic structures to make them more suitable for different photocatalytic applications.In this review,nanoarchitecture design,synthesis methods,photochemical properties,potential photocatalytic applications,and related reaction mechanisms of the modified high-efficiency carbon nitride-based photocatalysts were briefly summarized.The superior photocatalytic performance was identified to be associated with the enhanced visible-light response,fast photoinduced electron-hole separation,efficient charge migration,and increased unsaturated active sites.Moreover,the further advance of the visible-light harvesting and solar-to-energy conversions are proposed.