Ground freeze-thaw processes have significant impacts on infiltration,runoff and evapotranspiration.However,there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions,espe...Ground freeze-thaw processes have significant impacts on infiltration,runoff and evapotranspiration.However,there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions,especially of the interactions among permafrost,ecology,and hydrology.In this study,an alpine permafrost basin on the northeastern Qinghai-Tibet Plateau was selected to conduct hydrological and meteorological observations.We analyzed the annual variations in runoff,precipitation,evapotranspiration,and changes in water storage,as well as the mechanisms for runoff gen-eration in the basin from May 2014 to December 2015.The annual flow curve in the basin exhibited peaks both in spring and autumn floods.The high ratio of evapotranspiration to annual precipitation(>1.O)in the investigated wetland is mainly due to the considerably underestimated‘observed'precipitation caused by the wind-induced instrumental error and the neglect of snow sublimation.The stream flow from early May to late October probably came from the lateral discharge of subsurface flow in alpine wetlands.This study can provide data support and validation for hydrological model simulation and prediction,as well as water resource assessment,in the upper Yellow River Basin,especially for the headwater area.The results also provide case support for permafrost hydrology modeling in ungauged or poorly gauged watersheds in the High Mountain Asia.展开更多
The runoff and runoff process of Eucalyptus plantations natural watershed were studied to provide guidance for scientific evaluation of water conservation capacities of Eucalyptus plantations,compared with the Pinus m...The runoff and runoff process of Eucalyptus plantations natural watershed were studied to provide guidance for scientific evaluation of water conservation capacities of Eucalyptus plantations,compared with the Pinus massoniana forest natural watershed. The runoff volumes of Eucalyptus plantations and P. massoniana forest natural watersheds were continuously monitored using the small watershed runoff monitoring method and the automatic data collection devices from August,2013 to December,2016,and effects of heavy rainfall and continuous rainfall on the runoff process were studied. Results showed that the annual runoff coefficient of Eucalyptus plantations natural watershed was 0. 050,and 55. 4% lower than P. massoniana forest( 0. 112),with the difference being significant( P 〈 0. 01). Total runoff duration,time of maximum runoff lagging behind rainfall peak,and runoff duration caused by a heavy rainfall process( amounting to 147. 5 mm) between the two kinds of forest watersheds were significant different,those of Eucalyptus plantations were 35. 6 mm,0. 2 h and 13. 8 h,respectively,while those of P. massoniana forest were28. 5 mm,0. 7 h and 35. 5 h,respectively. Eucalyptus plantations natural watershed produced only 4-days runoff,and runoff depth amounted to3. 8 mm with a 7-days continuous precipitation process of rainfall with 125. 0 mm,while P. massoniana forest natural watershed produced continuously 13-days runoff,and the runoff depth was 10. 1 mm. In conclusion,water conservation capacity of Eucalyptus plantations is obviously lower than P. massoniana forest.展开更多
Based on previous research results on river re-distribution models, a modification on the effects of topographic slopes for a runoff parameterization was proposed and implemented to the NCAR's land sur- face model...Based on previous research results on river re-distribution models, a modification on the effects of topographic slopes for a runoff parameterization was proposed and implemented to the NCAR's land sur- face model (LSM). This modification has two aspects firstly, the topographic slopes cause outflows from higher topography and inflows into the lower topography points; secondly, topographic slopes also cause decrease of infiltration at higher topography and increases of infiltration at lower topography. Then changes in infiltration result in changes in soil molsture, surface fluxes and then in surface temperature, and eventual- ly in the upper atmosphere and the climate. This mechanism is very clearly demonstrated in the point bud- gets analysis at the Andes Mountains vicinities. Analysis from a regional scale perspective in the Mackenzie GEWEX Study (MAGS) area, the focus of the ongoing Canadian GEWEX program, shows that the modi- fied runoff parameterization does bring significant changes in the regional surface climate More important- ly, detailed analysis from a global perspective shows many encouraging improvements introduced by the modified LSM over the original model in simulating basic atmospheric climate properties such as thermodynamic features (temperature and humidity). All of these improvements in the atmospheric climate simulation illustrate that the inclusion of topographic effects in the LSM can force the AGCM to produce a more realistic model climate.展开更多
This paper presents the background,scientific objectives,experimental design,and preliminary achievements of the Xin’anjiang nested experimental watershed(XAJ-NEW),implemented in 2017 in eastern China,which has a sub...This paper presents the background,scientific objectives,experimental design,and preliminary achievements of the Xin’anjiang nested experimental watershed(XAJ-NEW),implemented in 2017 in eastern China,which has a subtropical humid monsoon climate and a total area of 2674 km2.The scientific objectives of the XAJ-NEW include building a comprehensive,multiscale,and nested hydrometeorological monitoring and experimental program,strengthening the observation of the water cycle,discovering the spatiotemporal scaling effects of hydrological processes,and revealing the mechanisms controlling runoff generation and partitioning in a typical humid,hilly area.After two years of operation,preliminary results indicated scale-dependent variability in key hydrometeorological processes and variables such as precipitation,runoff,groundwater,and soil moisture.The effects of canopy interception and runoff partitioning between the surface and subsurface were also identified.Continuous operation of this program can further reveal the mechanisms controlling runoff generation and partitioning,discover the spatiotemporal scaling effects of hydrological processes,and understand the impacts of climate change on hydrological processes.These findings provide new insights into understanding multi scale hydrological processes and their responses to meteorological forcings,improving model parameterization schemes,and enhancing weather and climate forecast skills.展开更多
Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and ...Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and periods of runoff based on the runoff and climate data for the past 50 years. Subsequently, with the socioeconomic and water resources data, we studied a comprehensive evaluation on the water security in this area. The results indicated that the stream flows in the three hydrological stations of Hongshanzui, Kensiwat and Bajiahu have sig- nificantly increased and undergone abrupt changes, with periods of 18 and 20 years. According to assessment, water security in the Manas River Basin was at an unsafe level in 2008. In criterion layer, the ecological security index and the index of supply-demand situation are both at the relatively secure level; the quantity index and so- cioeconomic index of water resources are at the unsafe level and basic security level, respectively. Therefore, in order to achieve sustainable economic and social development within the Manas River Basin, it is vital to take a series of effective measures to improve the status of water security.展开更多
基金supported by the Natural Science Foundation of China(41971091)Autonomous Province of Bozen/Bolzano-Department for Innovation,Research and University in the frame of the International Mobility for Researchers Programme(13585/2023).
文摘Ground freeze-thaw processes have significant impacts on infiltration,runoff and evapotranspiration.However,there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions,especially of the interactions among permafrost,ecology,and hydrology.In this study,an alpine permafrost basin on the northeastern Qinghai-Tibet Plateau was selected to conduct hydrological and meteorological observations.We analyzed the annual variations in runoff,precipitation,evapotranspiration,and changes in water storage,as well as the mechanisms for runoff gen-eration in the basin from May 2014 to December 2015.The annual flow curve in the basin exhibited peaks both in spring and autumn floods.The high ratio of evapotranspiration to annual precipitation(>1.O)in the investigated wetland is mainly due to the considerably underestimated‘observed'precipitation caused by the wind-induced instrumental error and the neglect of snow sublimation.The stream flow from early May to late October probably came from the lateral discharge of subsurface flow in alpine wetlands.This study can provide data support and validation for hydrological model simulation and prediction,as well as water resource assessment,in the upper Yellow River Basin,especially for the headwater area.The results also provide case support for permafrost hydrology modeling in ungauged or poorly gauged watersheds in the High Mountain Asia.
基金Supported by Special Project for Scientific Research of Public Welfare Industry of Ministry of Water Resources(201301044)
文摘The runoff and runoff process of Eucalyptus plantations natural watershed were studied to provide guidance for scientific evaluation of water conservation capacities of Eucalyptus plantations,compared with the Pinus massoniana forest natural watershed. The runoff volumes of Eucalyptus plantations and P. massoniana forest natural watersheds were continuously monitored using the small watershed runoff monitoring method and the automatic data collection devices from August,2013 to December,2016,and effects of heavy rainfall and continuous rainfall on the runoff process were studied. Results showed that the annual runoff coefficient of Eucalyptus plantations natural watershed was 0. 050,and 55. 4% lower than P. massoniana forest( 0. 112),with the difference being significant( P 〈 0. 01). Total runoff duration,time of maximum runoff lagging behind rainfall peak,and runoff duration caused by a heavy rainfall process( amounting to 147. 5 mm) between the two kinds of forest watersheds were significant different,those of Eucalyptus plantations were 35. 6 mm,0. 2 h and 13. 8 h,respectively,while those of P. massoniana forest were28. 5 mm,0. 7 h and 35. 5 h,respectively. Eucalyptus plantations natural watershed produced only 4-days runoff,and runoff depth amounted to3. 8 mm with a 7-days continuous precipitation process of rainfall with 125. 0 mm,while P. massoniana forest natural watershed produced continuously 13-days runoff,and the runoff depth was 10. 1 mm. In conclusion,water conservation capacity of Eucalyptus plantations is obviously lower than P. massoniana forest.
文摘Based on previous research results on river re-distribution models, a modification on the effects of topographic slopes for a runoff parameterization was proposed and implemented to the NCAR's land sur- face model (LSM). This modification has two aspects firstly, the topographic slopes cause outflows from higher topography and inflows into the lower topography points; secondly, topographic slopes also cause decrease of infiltration at higher topography and increases of infiltration at lower topography. Then changes in infiltration result in changes in soil molsture, surface fluxes and then in surface temperature, and eventual- ly in the upper atmosphere and the climate. This mechanism is very clearly demonstrated in the point bud- gets analysis at the Andes Mountains vicinities. Analysis from a regional scale perspective in the Mackenzie GEWEX Study (MAGS) area, the focus of the ongoing Canadian GEWEX program, shows that the modi- fied runoff parameterization does bring significant changes in the regional surface climate More important- ly, detailed analysis from a global perspective shows many encouraging improvements introduced by the modified LSM over the original model in simulating basic atmospheric climate properties such as thermodynamic features (temperature and humidity). All of these improvements in the atmospheric climate simulation illustrate that the inclusion of topographic effects in the LSM can force the AGCM to produce a more realistic model climate.
基金supported by the National Natural Science Foundation of China(51879067)the National Key Research and Development Program of China(2016YFC0402701)+2 种基金the Fundamental Research Funds for the Central Universities of China(B200204038)the Natural Science Foundation of Jiangsu Province(BK20180022)Six Talent Peaks Project in Jiangsu Province(NY-004)。
文摘This paper presents the background,scientific objectives,experimental design,and preliminary achievements of the Xin’anjiang nested experimental watershed(XAJ-NEW),implemented in 2017 in eastern China,which has a subtropical humid monsoon climate and a total area of 2674 km2.The scientific objectives of the XAJ-NEW include building a comprehensive,multiscale,and nested hydrometeorological monitoring and experimental program,strengthening the observation of the water cycle,discovering the spatiotemporal scaling effects of hydrological processes,and revealing the mechanisms controlling runoff generation and partitioning in a typical humid,hilly area.After two years of operation,preliminary results indicated scale-dependent variability in key hydrometeorological processes and variables such as precipitation,runoff,groundwater,and soil moisture.The effects of canopy interception and runoff partitioning between the surface and subsurface were also identified.Continuous operation of this program can further reveal the mechanisms controlling runoff generation and partitioning,discover the spatiotemporal scaling effects of hydrological processes,and understand the impacts of climate change on hydrological processes.These findings provide new insights into understanding multi scale hydrological processes and their responses to meteorological forcings,improving model parameterization schemes,and enhancing weather and climate forecast skills.
基金supported by the National Natural Science Foundation of China (41001066)the National Basic Research Program of China (Program 973) (2009CB421308)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes (201101049)
文摘Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and periods of runoff based on the runoff and climate data for the past 50 years. Subsequently, with the socioeconomic and water resources data, we studied a comprehensive evaluation on the water security in this area. The results indicated that the stream flows in the three hydrological stations of Hongshanzui, Kensiwat and Bajiahu have sig- nificantly increased and undergone abrupt changes, with periods of 18 and 20 years. According to assessment, water security in the Manas River Basin was at an unsafe level in 2008. In criterion layer, the ecological security index and the index of supply-demand situation are both at the relatively secure level; the quantity index and so- cioeconomic index of water resources are at the unsafe level and basic security level, respectively. Therefore, in order to achieve sustainable economic and social development within the Manas River Basin, it is vital to take a series of effective measures to improve the status of water security.