A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified w...A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified wavelet Galerkin method recently developed by the authors.Then,the classical fourth-order explicit Runge–Kutta method is employed to solve the resulting system of ordinary differential equations.Such a wavelet-based solution procedure has been justified by solving two test examples:results demonstrate that the proposed method has a much better accuracy and efficiency than many other existing numerical methods,and whose order of convergence can go up to 5.Most importantly,our results also indicate that the present wavelet method can readily deal with those fluid dynamics problems with high Reynolds numbers.展开更多
With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of ...With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of the motion of particles in the optical trap,but paid little attention to the early dynamic process between the initial state of the particles and the optical trap.Note that the viscous forces can greatly affect the motion of micro-spheres.In this paper,based on the equations of Newtonian mechanics,we investigate the dynamics of laser-trapped micro-spheres in the surrounding environment with different viscosity coefficients.Through the calculations,over time the particle trajectory clearly reveals the subtle details of the optical capture process,including acceleration,deceleration,turning,and reciprocating oscillation.The time to equilibrium mainly depends on the corresponding damping coefficient of the surrounding environment and the oscillation frequency of the optical tweezers.These studies are essential for understanding various mechanisms to engineer the mechanical motion behavior of molecules or microparticles in liquid or air.展开更多
In this study, we introduce a system of differential equations describing the motion of a single point mass or of two interacting point masses on a surface, that is solved by a fourth-order explicit Runge–Kutta(RK4) ...In this study, we introduce a system of differential equations describing the motion of a single point mass or of two interacting point masses on a surface, that is solved by a fourth-order explicit Runge–Kutta(RK4) scheme. The forces acting on the masses are gravity, the reaction force of the surface, friction, and, in case of two masses, their mutual interaction force. This latter is introduced by imposing that the geometrical distance between the coupled masses is constant. The solution is computed under the assumption that the point masses strictly slide on the surface, without leaping or rolling. To avoid complications stemming from numerical errors related to real topographies that are only known over discrete grids, we restrict our attention to simulations on analytical continuous surfaces. This study sets the basis for a generalization to more complex systems of masses, such as chains or matrices of blocks that are often used to model complex processes such as landslides and rockfalls. The results shown in this paper provide a background for a companion paper in which the system of equations is generalized, and different geometries are presented.展开更多
We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this te...We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.展开更多
Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme...Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11032006,11072094,and 11121202)the Ph.D.Program Foundation of Ministry of Education of China(Grant No.20100211110022)+2 种基金the National Key Project of Magneto-Constrained Fusion Energy Development Program(Grant No.2013GB110002)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2013-1)the Scholarship Award for Excellent Doctoral Student granted by the Lanzhou University
文摘A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified wavelet Galerkin method recently developed by the authors.Then,the classical fourth-order explicit Runge–Kutta method is employed to solve the resulting system of ordinary differential equations.Such a wavelet-based solution procedure has been justified by solving two test examples:results demonstrate that the proposed method has a much better accuracy and efficiency than many other existing numerical methods,and whose order of convergence can go up to 5.Most importantly,our results also indicate that the present wavelet method can readily deal with those fluid dynamics problems with high Reynolds numbers.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804399)the Special Funds for Basic Scientific Research at the Central University of South-Central University for Nationalities(Grant No.CZQ20018)Special Funds for Basic Scientific Research at Central Universities(Grant No.YZZ17005)。
文摘With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of the motion of particles in the optical trap,but paid little attention to the early dynamic process between the initial state of the particles and the optical trap.Note that the viscous forces can greatly affect the motion of micro-spheres.In this paper,based on the equations of Newtonian mechanics,we investigate the dynamics of laser-trapped micro-spheres in the surrounding environment with different viscosity coefficients.Through the calculations,over time the particle trajectory clearly reveals the subtle details of the optical capture process,including acceleration,deceleration,turning,and reciprocating oscillation.The time to equilibrium mainly depends on the corresponding damping coefficient of the surrounding environment and the oscillation frequency of the optical tweezers.These studies are essential for understanding various mechanisms to engineer the mechanical motion behavior of molecules or microparticles in liquid or air.
基金mostly financed by the FP7 Project ASTARTE "Assessment,Strategy and Risk Reduction for 740 Tsunamis in Europe"(FP7-ENV2013 6.4-3,Grant603839)the Italian National Project RITMARE that,among others,treat landslide models with tsunamigenic potential
文摘In this study, we introduce a system of differential equations describing the motion of a single point mass or of two interacting point masses on a surface, that is solved by a fourth-order explicit Runge–Kutta(RK4) scheme. The forces acting on the masses are gravity, the reaction force of the surface, friction, and, in case of two masses, their mutual interaction force. This latter is introduced by imposing that the geometrical distance between the coupled masses is constant. The solution is computed under the assumption that the point masses strictly slide on the surface, without leaping or rolling. To avoid complications stemming from numerical errors related to real topographies that are only known over discrete grids, we restrict our attention to simulations on analytical continuous surfaces. This study sets the basis for a generalization to more complex systems of masses, such as chains or matrices of blocks that are often used to model complex processes such as landslides and rockfalls. The results shown in this paper provide a background for a companion paper in which the system of equations is generalized, and different geometries are presented.
基金This research was supported by the National Natural Science Foundation of China (Nos. 41230210 and 41204074), the Science Foundation of the Education Department of Yunnan Province (No. 2013Z152), and Statoil Company (Contract No. 4502502663).
文摘We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.
文摘Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency.