To model the cumulative deformation of granular soils under cyclic loading, a mathematical model was proposed. The power law connection between the shear strain and loading cycle was represented by using fractional de...To model the cumulative deformation of granular soils under cyclic loading, a mathematical model was proposed. The power law connection between the shear strain and loading cycle was represented by using fractional derivative approach. The volumetric strain was characterized by a modified cyclic flow rule which considered the effect of particle breakage. All model parameters were obtained by the cyclic and static triaxial tests. Predictions of the test results were provided to validate the proposed model. Comparison with an existing cumulative model was also made to show the advantage of the proposed model.展开更多
The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rul...The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rule, the relations between the micro- scopic deformations of atomic bonds and electron gas and macroscopic deformation are established. Further, atomic bonds are grouped according to their directions, and atomic bonds in the same direction are simplified as a spring-bundle component. Atom embedding interactions in unit reference volume are simplified as a cubage component. Consequently, a material model com- posed of spring-bundle components and a cubage component is established. Since the essence of damage is the decrease and loss of atomic bonding forces, the damage effect can be reflected by the response functions of these two kinds of components. For- mulating the mechanical responses of two kinds of components, the corresponding elasto-damage constitutive equations are de- rived. Considering that slip is the main plastic deformation mechanism of polycrystalline metals, the slip systems of crystal are extended to polycrystalline, and the slip components are proposed to describe the plastic deformation. Based on the decomposition of deformation gradient and combining the plastic response with the elasto-damage one, the elasto-plastic damage constitutive equations are derived. As a result, a material model iormulated with spring-bundle components, a cubage component and slip components is established. Different from phenomenological constitutive theories, the mechanical property of materials depends on the property of components rather than that directly obtained on the representative volume element. The effect of finite deformation is taken into account in this model. Parameter calibration procedure and the basic characteristics of this model are discussed.展开更多
On the basis of analysing basic features of Shiliushubao landslide, the landslide's deformation and development tendency are quantitatively studied by using FLA^3D program. The results accord with monitoring results....On the basis of analysing basic features of Shiliushubao landslide, the landslide's deformation and development tendency are quantitatively studied by using FLA^3D program. The results accord with monitoring results. The results are indicated that resevoir impounding accelerates the landslide's deformation, and the variation of reservoir water level is key factor of affecting the deformation; The landslide has the characters of pull-behind move ment according to the displacement of the landslide body gradually reducing from leading edge to trailing edge; Excavating and deloading slow down the landslide's deformation in the certain degree. On the basis, the deformation developmental tendency of Shiliushubao landslide is predicted by the established simulating model.展开更多
基金Project supported by the National Natural Science Foundation of China(No.51509024)the Fundamental Research Funds for the Central Universities(No.106112015CDJXY200008)
文摘To model the cumulative deformation of granular soils under cyclic loading, a mathematical model was proposed. The power law connection between the shear strain and loading cycle was represented by using fractional derivative approach. The volumetric strain was characterized by a modified cyclic flow rule which considered the effect of particle breakage. All model parameters were obtained by the cyclic and static triaxial tests. Predictions of the test results were provided to validate the proposed model. Comparison with an existing cumulative model was also made to show the advantage of the proposed model.
基金National Natural Science Foundation of China (10572140,10721202)
文摘The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rule, the relations between the micro- scopic deformations of atomic bonds and electron gas and macroscopic deformation are established. Further, atomic bonds are grouped according to their directions, and atomic bonds in the same direction are simplified as a spring-bundle component. Atom embedding interactions in unit reference volume are simplified as a cubage component. Consequently, a material model com- posed of spring-bundle components and a cubage component is established. Since the essence of damage is the decrease and loss of atomic bonding forces, the damage effect can be reflected by the response functions of these two kinds of components. For- mulating the mechanical responses of two kinds of components, the corresponding elasto-damage constitutive equations are de- rived. Considering that slip is the main plastic deformation mechanism of polycrystalline metals, the slip systems of crystal are extended to polycrystalline, and the slip components are proposed to describe the plastic deformation. Based on the decomposition of deformation gradient and combining the plastic response with the elasto-damage one, the elasto-plastic damage constitutive equations are derived. As a result, a material model iormulated with spring-bundle components, a cubage component and slip components is established. Different from phenomenological constitutive theories, the mechanical property of materials depends on the property of components rather than that directly obtained on the representative volume element. The effect of finite deformation is taken into account in this model. Parameter calibration procedure and the basic characteristics of this model are discussed.
文摘On the basis of analysing basic features of Shiliushubao landslide, the landslide's deformation and development tendency are quantitatively studied by using FLA^3D program. The results accord with monitoring results. The results are indicated that resevoir impounding accelerates the landslide's deformation, and the variation of reservoir water level is key factor of affecting the deformation; The landslide has the characters of pull-behind move ment according to the displacement of the landslide body gradually reducing from leading edge to trailing edge; Excavating and deloading slow down the landslide's deformation in the certain degree. On the basis, the deformation developmental tendency of Shiliushubao landslide is predicted by the established simulating model.