废旧轮胎胶粉用于填埋场衬垫材料改性,有望提高衬垫系统的有效性并扩展废旧轮胎的资源化利用途径。开展废旧轮胎胶粉–黏土混合土的内部强度和界面强度试验,探讨胶粉特征对混合土强度性质的影响规律。研究表明,随着胶粉掺入比的增加,混...废旧轮胎胶粉用于填埋场衬垫材料改性,有望提高衬垫系统的有效性并扩展废旧轮胎的资源化利用途径。开展废旧轮胎胶粉–黏土混合土的内部强度和界面强度试验,探讨胶粉特征对混合土强度性质的影响规律。研究表明,随着胶粉掺入比的增加,混合土抗剪强度有所增大,无侧限抗压强度满足规范要求。当掺入比为15%,土工膜/混合土界面强度高于土工膜/高岭土,但400 k Pa压力下表现出软化特征,残余强度低于土工膜/高岭土界面;与GCL/高岭土界面相比,GCL/混合土界面强度在法向应力较小时略小,但在法向应力较大时显著增大;界面强度小于土的内部抗剪强度。总体来看,12和30目胶粉对混合土强度的影响没有显著差异,高岭土中掺入废旧轮胎胶粉不会对内部强度和界面强度产生不利影响。展开更多
~2H-NMR spectroscopy of the probe molecule,deuterated benzene,was applied to characterize organo-clay dispersion and confinement effect on the local motion of benzene in rubber/clay nanocomposite-gels.The observed ~2H...~2H-NMR spectroscopy of the probe molecule,deuterated benzene,was applied to characterize organo-clay dispersion and confinement effect on the local motion of benzene in rubber/clay nanocomposite-gels.The observed ~2H line shapes of benzene in intercalated and exfoliated nanocomposites were obviously different,which can be used to estimate clay-dispersion quality.~2H-NMR line shapes also reflect the different influence of intercalated or exfoliated layered-silicates on local motions of benzene,implying that...展开更多
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s...We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.展开更多
Natural rubber latex is </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">white liquid in the form of </span><span style="...Natural rubber latex is </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">white liquid in the form of </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> colloidal dispersion of rubber globules suspended in </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">aqueous liquid. Produced in large quantities in Ivory Coast, the local transformation of natural latex has so far remained insignificant, although some attempts have been made to use it in the manufacture of flexible facade briquettes for rounded walls. Thus, this study aims to incorporate clay as a filler in natural latex for use as an adhesive for tile installation. To do this, diffe</span><span style="font-family:Verdana;">rent proportions of clay paste were added to the natural latex and the resulting mixtures were used to make the sample and tile adhesive. From the analysis of the results obtained, it appears that the samples with a clay paste density of 0.8 and 1 absorb less water and show</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> good pull-out strength. The mixtu</span><span style="font-family:""><span style="font-family:Verdana;">res of 30% and 35% latex and 0.8 </span><span><span style="font-family:Verdana;">and 1 clay paste density respectively have pullout stresses greater than 1 N/mm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">. According to</span></span><span style="font-family:Verdana;"> NF EN 1348, these adhesives can therefore be used as tile adhesive.展开更多
文摘废旧轮胎胶粉用于填埋场衬垫材料改性,有望提高衬垫系统的有效性并扩展废旧轮胎的资源化利用途径。开展废旧轮胎胶粉–黏土混合土的内部强度和界面强度试验,探讨胶粉特征对混合土强度性质的影响规律。研究表明,随着胶粉掺入比的增加,混合土抗剪强度有所增大,无侧限抗压强度满足规范要求。当掺入比为15%,土工膜/混合土界面强度高于土工膜/高岭土,但400 k Pa压力下表现出软化特征,残余强度低于土工膜/高岭土界面;与GCL/高岭土界面相比,GCL/混合土界面强度在法向应力较小时略小,但在法向应力较大时显著增大;界面强度小于土的内部抗剪强度。总体来看,12和30目胶粉对混合土强度的影响没有显著差异,高岭土中掺入废旧轮胎胶粉不会对内部强度和界面强度产生不利影响。
基金supported by the National Natural Science Foundation of China (Nos.20774054,20374031).
文摘~2H-NMR spectroscopy of the probe molecule,deuterated benzene,was applied to characterize organo-clay dispersion and confinement effect on the local motion of benzene in rubber/clay nanocomposite-gels.The observed ~2H line shapes of benzene in intercalated and exfoliated nanocomposites were obviously different,which can be used to estimate clay-dispersion quality.~2H-NMR line shapes also reflect the different influence of intercalated or exfoliated layered-silicates on local motions of benzene,implying that...
文摘We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.
文摘Natural rubber latex is </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">white liquid in the form of </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> colloidal dispersion of rubber globules suspended in </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">aqueous liquid. Produced in large quantities in Ivory Coast, the local transformation of natural latex has so far remained insignificant, although some attempts have been made to use it in the manufacture of flexible facade briquettes for rounded walls. Thus, this study aims to incorporate clay as a filler in natural latex for use as an adhesive for tile installation. To do this, diffe</span><span style="font-family:Verdana;">rent proportions of clay paste were added to the natural latex and the resulting mixtures were used to make the sample and tile adhesive. From the analysis of the results obtained, it appears that the samples with a clay paste density of 0.8 and 1 absorb less water and show</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> good pull-out strength. The mixtu</span><span style="font-family:""><span style="font-family:Verdana;">res of 30% and 35% latex and 0.8 </span><span><span style="font-family:Verdana;">and 1 clay paste density respectively have pullout stresses greater than 1 N/mm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">. According to</span></span><span style="font-family:Verdana;"> NF EN 1348, these adhesives can therefore be used as tile adhesive.