Precipitation over southeastern Lake Baikal features a significant decreasing trend in July and August over 1979–2018 and is closely related to blocking occurrence over central Siberia(45°–70°N,75°–1...Precipitation over southeastern Lake Baikal features a significant decreasing trend in July and August over 1979–2018 and is closely related to blocking occurrence over central Siberia(45°–70°N,75°–115°E).This study investigates the formation and maintenance of anticyclonic and cyclonic wave-breaking(AWB and CWB)blocking events and their climate impacts on precipitation in the southeastern Lake Baikal area.Both AWB and CWB blocking events are characterized by a cold trough deepening from the sub-Arctic region and a ridge amplifying toward its north over central Siberia,as well as an evident Rossby wave train over midlatitude Eurasia.For AWB blocking events,the ridge and trough pair tilts clockwise and the wave train exhibits a zonal distribution.In contrast,ridge and trough pair associated with CWB blocking events leans anticlockwise with larger-scale,meridional,and more anisotropic signatures.Moreover,the incoming Rossby wave energy associated with CWB blocking events is more evident than for AWB blocking events.Therefore,CWB blocking events are more persistent.AWB blocking events produce more extensive and persistent precipitation over the southeastern Lake Baikal area than CWB blocking events,in which moderate above-normal rainfall is seen in the decaying periods of blockings.A significant decreasing trend is found in terms of AWB blocking occurrence over central Siberia,which may contribute to the downward trend of precipitation over southeastern Lake Baikal.展开更多
Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is dis...Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.展开更多
This study presents a 44-year climatology of potential vorticity (PV) streamers in the Northern Hemisphere based upon analyses of the ERA-40 reanalysis data set. A comparison to an existing 15-year climatology yield...This study presents a 44-year climatology of potential vorticity (PV) streamers in the Northern Hemisphere based upon analyses of the ERA-40 reanalysis data set. A comparison to an existing 15-year climatology yields very good agreement in the locations of PV streamer frequency maxima, but some differences are found in the amplitude of frequencies. The climatology is assessed with the focus on links between PV streamer frequencies and the synoptic- and planetary-scale variability of the dynamical tropopause. A comprehensive overview is provided on where (zonally) and when (seasonally) short-term variability throughout the extra-tropical and sub-tropical tropopause is enhanced or reduced. Several key processes that influence this variability are discussed. Baroclinic processes, for example, determine the variability in the storm-track areas in winter, whereas the Asian summer monsoon significantly influences the variability over Asia. The paper also describes links between the frequency of PV streamers in the extra-tropical and subtropical tropopause and three major northern hemisphere teleconnection patterns. The observed changes in the PV streamer frequencies are closely related to concomitant variations of PV and its gradient within the tropopause region. During opposite phases of the North Atlantic Oscillation the location of the streamer frequency maxima shifts significantly in the Atlantic and European region in both the extra-tropics and subtropics. The influence of ENSO on the streamer frequencies is most pronounced in the subtropical Pacific.展开更多
The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Centra...The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Central Pacific (CP) E1-Nifio. During EP E1-Nino, the geopotential height anomaly at 500 hPa (Z500) exhibits a Pacific-North America (PNA) pattern. During CP EI-Nifio, the Z500 anomaly shows a north positive-south negative pattern over the North Pacific. The anomalous distributions of baroclinicity and storm track are consistent with those of upper-level zonal wind for both EP and CP EI-Nino, suggesting impacts of mean flow on storm track variability. Anticyclonic wave breaking (AWB) oczurs less frequently in EP EI-Nino years, while cyclonic wave breaking (CWB) occurs more frequently in CP EI-Nino years over the North Pacific sector. Outside the North Pacific, more CWB events occur over North America during EP Ei-NiNo. When AWB events occur less frequently over the North Pacific during EP EI-Nino, Z500 decreases locally and the zonal wind is strengthened (weakened) to the south (north). This is because AWB events reflect a monopoie high anomaly at the centroid of breaking events. When CWB events occur more frequently over the North Pacific under CP EI-Nino conditions, and over North America under EP EI-Nino condition, Z500 increases (decreases) to the northeast (southwest), since CWB events are related to a northeast-southwest dipole Z500 anomaly. The anomalous RWB events act to invigorate and reinforce the circulation anomalies over the North Pacific-North America region linked with the two types of EI-Nino.展开更多
基金supported by the National Science and Technology Support Program of China (Grant No. 2015BAC03B03)the National Natural Science Foundation of China (Grant Nos. 41861144014, 41630424 and 41875078)
文摘Precipitation over southeastern Lake Baikal features a significant decreasing trend in July and August over 1979–2018 and is closely related to blocking occurrence over central Siberia(45°–70°N,75°–115°E).This study investigates the formation and maintenance of anticyclonic and cyclonic wave-breaking(AWB and CWB)blocking events and their climate impacts on precipitation in the southeastern Lake Baikal area.Both AWB and CWB blocking events are characterized by a cold trough deepening from the sub-Arctic region and a ridge amplifying toward its north over central Siberia,as well as an evident Rossby wave train over midlatitude Eurasia.For AWB blocking events,the ridge and trough pair tilts clockwise and the wave train exhibits a zonal distribution.In contrast,ridge and trough pair associated with CWB blocking events leans anticlockwise with larger-scale,meridional,and more anisotropic signatures.Moreover,the incoming Rossby wave energy associated with CWB blocking events is more evident than for AWB blocking events.Therefore,CWB blocking events are more persistent.AWB blocking events produce more extensive and persistent precipitation over the southeastern Lake Baikal area than CWB blocking events,in which moderate above-normal rainfall is seen in the decaying periods of blockings.A significant decreasing trend is found in terms of AWB blocking occurrence over central Siberia,which may contribute to the downward trend of precipitation over southeastern Lake Baikal.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41475074, 41775063 and 41475046)
文摘Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.
文摘This study presents a 44-year climatology of potential vorticity (PV) streamers in the Northern Hemisphere based upon analyses of the ERA-40 reanalysis data set. A comparison to an existing 15-year climatology yields very good agreement in the locations of PV streamer frequency maxima, but some differences are found in the amplitude of frequencies. The climatology is assessed with the focus on links between PV streamer frequencies and the synoptic- and planetary-scale variability of the dynamical tropopause. A comprehensive overview is provided on where (zonally) and when (seasonally) short-term variability throughout the extra-tropical and sub-tropical tropopause is enhanced or reduced. Several key processes that influence this variability are discussed. Baroclinic processes, for example, determine the variability in the storm-track areas in winter, whereas the Asian summer monsoon significantly influences the variability over Asia. The paper also describes links between the frequency of PV streamers in the extra-tropical and subtropical tropopause and three major northern hemisphere teleconnection patterns. The observed changes in the PV streamer frequencies are closely related to concomitant variations of PV and its gradient within the tropopause region. During opposite phases of the North Atlantic Oscillation the location of the streamer frequency maxima shifts significantly in the Atlantic and European region in both the extra-tropics and subtropics. The influence of ENSO on the streamer frequencies is most pronounced in the subtropical Pacific.
基金jointly supported by the National Natural Science Foundation of China(Grant No.41275068)the Special Fund for Meteorology Research in the Public Interest(Grant No.GYHY201106017)the 973 Program(Grant No.2010CB428504)
文摘The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Central Pacific (CP) E1-Nifio. During EP E1-Nino, the geopotential height anomaly at 500 hPa (Z500) exhibits a Pacific-North America (PNA) pattern. During CP EI-Nifio, the Z500 anomaly shows a north positive-south negative pattern over the North Pacific. The anomalous distributions of baroclinicity and storm track are consistent with those of upper-level zonal wind for both EP and CP EI-Nino, suggesting impacts of mean flow on storm track variability. Anticyclonic wave breaking (AWB) oczurs less frequently in EP EI-Nino years, while cyclonic wave breaking (CWB) occurs more frequently in CP EI-Nino years over the North Pacific sector. Outside the North Pacific, more CWB events occur over North America during EP Ei-NiNo. When AWB events occur less frequently over the North Pacific during EP EI-Nino, Z500 decreases locally and the zonal wind is strengthened (weakened) to the south (north). This is because AWB events reflect a monopoie high anomaly at the centroid of breaking events. When CWB events occur more frequently over the North Pacific under CP EI-Nino conditions, and over North America under EP EI-Nino condition, Z500 increases (decreases) to the northeast (southwest), since CWB events are related to a northeast-southwest dipole Z500 anomaly. The anomalous RWB events act to invigorate and reinforce the circulation anomalies over the North Pacific-North America region linked with the two types of EI-Nino.