An innovative photoelectrode, TiO 2/Ti mesh electrode, was prepared by galvanostaticanodisation. The morphology and the crystalline texture of the TiO 2 film on mesh electrode were examined by scanning electronic mi...An innovative photoelectrode, TiO 2/Ti mesh electrode, was prepared by galvanostaticanodisation. The morphology and the crystalline texture of the TiO 2 film on mesh electrode were examined by scanning electronic microscopy and Raman spectroscopy respectively. The examination results indicated that the structure and properties of the film depended on anodisation rate, and the anatase was the dominant component under the controlled experimental conditions. Degradation of Rose Bengal(RB) in photocatalytic(PC) and photoelectrocatalytic(PEC) reaction was investigated, the results demonstrated that electric biasing could improve the efficiency of photocatalytic reaction. The measurement results of TOC in photoelectrocatalytic degradation showed that the mineralisation of RB was complete relatively. The comparison between the degradation efficiency of RB in PEC process and that in aqueous TiO 2 dispersion was conducted. The results showed that the apparent first order rate constant of RB degradation in PEC process was larger than that in aqueous dispersion with 0 1%—0 3% TiO 2 powder, but was smaller than that in aqueous dispersion with 1 0% TiO 2展开更多
Schwann cells are glial cells of peripheral nervous system, responsible for axonal myelination and ensheathing, as well as tissue repair following a peripheral nervous system injury. They are one of several cell types...Schwann cells are glial cells of peripheral nervous system, responsible for axonal myelination and ensheathing, as well as tissue repair following a peripheral nervous system injury. They are one of several cell types that are widely studied and most commonly used for cell transplantation to treat spinal cord injury, due to their intrinsic characteristics including the ability to secrete a variety of neurotrophic factors. This mini review summarizes the recent findings of endogenous Schwann cells after spinal cord injury and discusses their role in tissue repair and axonal regeneration. After spinal cord injury, numerous endogenous Schwann cells migrate into the lesion site from the nerve roots, involving in the construction of newly formed repaired tissue and axonal myelination. These invading Schwann cells also can move a long distance away from the injury site both rostrally and caudally. In addition, Schwann cells can be induced to migrate by minimal insults (such as scar ablation) within the spinal cord and integrate with astrocytes under certain circumstances. More importantly, the host Schwann cells can be induced to migrate into spinal cord by transplantation of different cell types, such as exogenous Schwann cells, olfactory ensheathing cells, and bone marrow-derived stromal stem cells. Migration of endogenous Schwann cells following spinal cord injury is a common natural phenomenon found both in animal and human, and the myelination by Schwann cells has been examined effective in signal conduction electrophysiologically. Therefore, if the inherent properties of endogenous Schwann cells could be developed and utilized, it would offer a new avenue for the restoration of injured spinal cord.展开更多
文摘An innovative photoelectrode, TiO 2/Ti mesh electrode, was prepared by galvanostaticanodisation. The morphology and the crystalline texture of the TiO 2 film on mesh electrode were examined by scanning electronic microscopy and Raman spectroscopy respectively. The examination results indicated that the structure and properties of the film depended on anodisation rate, and the anatase was the dominant component under the controlled experimental conditions. Degradation of Rose Bengal(RB) in photocatalytic(PC) and photoelectrocatalytic(PEC) reaction was investigated, the results demonstrated that electric biasing could improve the efficiency of photocatalytic reaction. The measurement results of TOC in photoelectrocatalytic degradation showed that the mineralisation of RB was complete relatively. The comparison between the degradation efficiency of RB in PEC process and that in aqueous TiO 2 dispersion was conducted. The results showed that the apparent first order rate constant of RB degradation in PEC process was larger than that in aqueous dispersion with 0 1%—0 3% TiO 2 powder, but was smaller than that in aqueous dispersion with 1 0% TiO 2
文摘Schwann cells are glial cells of peripheral nervous system, responsible for axonal myelination and ensheathing, as well as tissue repair following a peripheral nervous system injury. They are one of several cell types that are widely studied and most commonly used for cell transplantation to treat spinal cord injury, due to their intrinsic characteristics including the ability to secrete a variety of neurotrophic factors. This mini review summarizes the recent findings of endogenous Schwann cells after spinal cord injury and discusses their role in tissue repair and axonal regeneration. After spinal cord injury, numerous endogenous Schwann cells migrate into the lesion site from the nerve roots, involving in the construction of newly formed repaired tissue and axonal myelination. These invading Schwann cells also can move a long distance away from the injury site both rostrally and caudally. In addition, Schwann cells can be induced to migrate by minimal insults (such as scar ablation) within the spinal cord and integrate with astrocytes under certain circumstances. More importantly, the host Schwann cells can be induced to migrate into spinal cord by transplantation of different cell types, such as exogenous Schwann cells, olfactory ensheathing cells, and bone marrow-derived stromal stem cells. Migration of endogenous Schwann cells following spinal cord injury is a common natural phenomenon found both in animal and human, and the myelination by Schwann cells has been examined effective in signal conduction electrophysiologically. Therefore, if the inherent properties of endogenous Schwann cells could be developed and utilized, it would offer a new avenue for the restoration of injured spinal cord.