The theory of failure of rolling contact bearings is based on fluctuating high level loading and material fatigue. This theory is unimodal, considering only the solid components of the bearing, and ignoring the liquid...The theory of failure of rolling contact bearings is based on fluctuating high level loading and material fatigue. This theory is unimodal, considering only the solid components of the bearing, and ignoring the liquid phase, which is the lubricant. Bearing life is rather dispersed, reaching a ratio of 20 between the extreme values. Since this theory was established, several exceptional phenomena were detected that could not be explained by it, such as: 1) Pitting damage beyond the contact path;2) Detrimental effect of a minute quantity of water in the lubricant on bearing life. 25 ppm of water in the lubricant brought about shorter bearing life by over than 30%. The bimodal failure theory considers both solid and liquid bearing components. The damaging process of the lubricant evolves from its cavitation. During this process vapor filled cavities are formed in low pressure zones. When these cavities reach high pressure zones they implode exothermally. These implosions cause local high pressure pulses reaching 30,000 at accompanied by a temperature rise of about 2000 degrees K [<a href="#ref1">1</a>]. This paper includes cavitation erosion test results on stainless steel samples by vibratory and water tunnel test rigs. Various methods of lubricant dehydration are presented and evaluated. The main conclusion from this analysis is the use of water-free lubricants, for long life of RC bearings and more uniform service life thereof.展开更多
<span><span><span style="font-family:Verdana;">The prevailing cumulative failure curves of Rolling Contact Bearings (RCB) have two main drawbacks: they begin at the origin and have a large ...<span><span><span style="font-family:Verdana;">The prevailing cumulative failure curves of Rolling Contact Bearings (RCB) have two main drawbacks: they begin at the origin and have a large dispersion. The purpose of this study is to develop an ideal failure curve and overcome the present drawbacks. The ideal failure curve of RC bearings is obtained by applying a water-free lubricant to the tested bearings. This eliminates the cavitation erosion from the Bimodal failure mechanism and the synergistic effect with the mechanical failure mode</span><span style="font-family:Verdana;">.</span></span></span><span><span><span> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> new concept considers the fatigue process involved in the failure mechanism and suggests decreasing the dispersion of bearing life.</span></span></span>展开更多
文摘The theory of failure of rolling contact bearings is based on fluctuating high level loading and material fatigue. This theory is unimodal, considering only the solid components of the bearing, and ignoring the liquid phase, which is the lubricant. Bearing life is rather dispersed, reaching a ratio of 20 between the extreme values. Since this theory was established, several exceptional phenomena were detected that could not be explained by it, such as: 1) Pitting damage beyond the contact path;2) Detrimental effect of a minute quantity of water in the lubricant on bearing life. 25 ppm of water in the lubricant brought about shorter bearing life by over than 30%. The bimodal failure theory considers both solid and liquid bearing components. The damaging process of the lubricant evolves from its cavitation. During this process vapor filled cavities are formed in low pressure zones. When these cavities reach high pressure zones they implode exothermally. These implosions cause local high pressure pulses reaching 30,000 at accompanied by a temperature rise of about 2000 degrees K [<a href="#ref1">1</a>]. This paper includes cavitation erosion test results on stainless steel samples by vibratory and water tunnel test rigs. Various methods of lubricant dehydration are presented and evaluated. The main conclusion from this analysis is the use of water-free lubricants, for long life of RC bearings and more uniform service life thereof.
文摘<span><span><span style="font-family:Verdana;">The prevailing cumulative failure curves of Rolling Contact Bearings (RCB) have two main drawbacks: they begin at the origin and have a large dispersion. The purpose of this study is to develop an ideal failure curve and overcome the present drawbacks. The ideal failure curve of RC bearings is obtained by applying a water-free lubricant to the tested bearings. This eliminates the cavitation erosion from the Bimodal failure mechanism and the synergistic effect with the mechanical failure mode</span><span style="font-family:Verdana;">.</span></span></span><span><span><span> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> new concept considers the fatigue process involved in the failure mechanism and suggests decreasing the dispersion of bearing life.</span></span></span>